Skip to main content

Advertisement

Log in

Human urine-derived stem cells play a novel role in the treatment of STZ-induced diabetic mice

  • Short Communication
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Human urine-derived stem cells (hUSCs) are a potential stem cell source for cell therapy. However, the effect of hUSCs on glucose metabolism regulation in type 1 diabetes was not clear. Therefore, the aim of the study was to evaluate whether hUSCs have protective effect on streptozotocin (STZ)-induced diabetes. hUSCs were extracted and cultivated with a special culture medium. Flow cytometry analysis was applied to detect cell surface markers. BALB/c male nude mice were either injected with high-dose STZ (HD-STZ) or multiple low-dose STZ (MLD-STZ). Serum and pancreatic insulin were measured, islet morphology and its vascularization were investigated. hUSCs highly expressed CD29, CD73, CD90 and CD146, and could differentiate into, at least, bone and fat in vitro. Transplantation of hUSCs into HD-STZ treated mice prolonged the median survival time and improved their blood glucose, and into those with MLD-STZ improved the glucose tolerance, islet morphology and increased the serum and pancreas insulin content. Furthermore, CD31 expression increased significantly in islets of BALB/c nude mice treated with hUSCs compared to those of un-transplanted MLD-STZ mice. hUSCs could improve the median survival time and glucose homeostasis in STZ-treated mice through promoting islet vascular regeneration and pancreatic beta-cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abdel-Hamid AA, El-Firgany A (2016) Hydroxychloroquine hindering of diabetic isletopathy carries its signature on the inflammatory cytokines. J Mol Histol 47:183–193

    Article  PubMed  CAS  Google Scholar 

  • Akirav EM, Baquero MT, Opare-Addo LW, Akirav M, Galvan E, Kushner JA, Rimm DL, Herold KC (2011) Glucose and inflammation control islet vascular density and beta-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose. Diabetes 60:876–883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Astorri E, Fiorina P, Gavaruzzi G, Astorri A, Magnati G (1997) Left ventricular function in insulin-dependent and in non-insulin-dependent diabetic patients: radionuclide assessment. Cardiology 88:152–155

    Article  PubMed  CAS  Google Scholar 

  • Bellin MD, Barton FB, Heitman A, Harmon JV, Kandaswamy R, Balamurugan AN, Sutherland DE, Alejandro R, Hering BJ (2012) Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant 12:1576–1583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF, Garcia-Ocana A (2014) Human beta-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes 63:819–831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T, Fan Y, Lu X, Zhou X, Liu H et al (2013) Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 31:1840–1856

    Article  PubMed  CAS  Google Scholar 

  • Chen WC, Park TS, Murray IR, Zimmerlin L, Lazzari L, Huard J, Peault B (2013). Cellular kinetics of perivascular MSC precursors. Stem Cells Int 2013:983059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen F, Sha M, Wang Y, Wu T, Shan W, Liu J, Zhou W, Zhu Y, Sun Y, Shi Y et al (2016) Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models. Diabetologia 59:316–324

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S (2017) Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 6:943–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Addio F, Valderrama VA, Ben NM, Franek E, Zhu D, Li L, Ning G, Snarski E, Fiorina P (2014) Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. Diabetes 63:3041–3046

    Article  PubMed  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  PubMed  CAS  Google Scholar 

  • Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P (2012) The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 30:1664–1674

    Article  PubMed  CAS  Google Scholar 

  • Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Abou-El-Mahasen MA, Ashamallah SA, Khater SM, El-Halawani SM, Ibrahim RY, Uin GS et al (2013) Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant 22:133–145

    Article  PubMed  Google Scholar 

  • Guan JJ, Niu X, Gong FX, Hu B, Guo SC, Lou YL, Zhang CQ, Deng ZF, Wang Y (2014) Biological characteristics of human-urine-derived stem cells: potential for cell-based therapy in neurology. Tissue Eng A 20:1794–1806

    Article  CAS  Google Scholar 

  • Guan J, Zhang J, Zhu Z, Niu X, Guo S, Wang Y, Zhang C (2015) Bone morphogenetic protein 2 gene transduction enhances the osteogenic potential of human urine-derived stem cells. Stem Cell Res Ther 6:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149

    Article  PubMed  CAS  Google Scholar 

  • Hayes HL, Zhang L, Becker TC, Haldeman JM, Stephens SB, Arlotto M, Moss LG, Newgard CB, Hohmeier HE (2016) A Pdx-1-regulated soluble factor activates rat and human islet cell proliferation. Mol Cell Biol 36:2918–2930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herold KC, Vignali DA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13:243–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jafarian A, Taghikani M, Abroun S, Allahverdi A, Lamei M, Lakpour N, Soleimani M (2015) The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and anti-MiR-9. PLoS ONE 10:e128650

    Article  CAS  Google Scholar 

  • Kang HM, Kim J, Park S, Kim J, Kim H, Kim KS, Lee EJ, Seo SI, Kang SG, Lee JE, Lim H (2009) Insulin-secreting cells from human eyelid-derived stem cells alleviate type I diabetes in immunocompetent mice. Stem Cells 27:1999–2008

    Article  PubMed  CAS  Google Scholar 

  • Khorsandi L, Nejad-Dehbashi F, Ahangarpour A, Hashemitabar M (2015) Three-dimensional differentiation of bone marrow-derived mesenchymal stem cells into insulin-producing cells. Tissue Cell 47:66–72

    Article  PubMed  CAS  Google Scholar 

  • Khosravi-Maharlooei M, Hajizadeh-Saffar E, Tahamtani Y, Basiri M, Montazeri L, Khalooghi K, Kazemi AM, Farrokhi A, Aghdami N, Sadr HNA et al (2015) Therapy of endocrine disease: Islet transplantation for type 1 diabetes: so close and yet so far away. Eur J Endocrinol 173:R165–R183

    Article  PubMed  CAS  Google Scholar 

  • Kolb H (1987) Mouse models of insulin dependent diabetes: low-dose streptozocin-induced diabetes and nonobese diabetic (NOD) mice. Diabetes Metab Rev 3:751–778

    Article  PubMed  CAS  Google Scholar 

  • Kono TM, Sims EK, Moss DR, Yamamoto W, Ahn G, Diamond J, Tong X, Day KH, Territo PR, Hanenberg H et al (2014) Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: analysis of hASC-derived paracrine effectors. Stem Cells 32:1831–1842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai Y, Schneider D, Kidszun A, Hauck-Schmalenberger I, Breier G, Brandhorst D, Brandhorst H, Iken M, Brendel MD, Bretzel RG, Linn T (2005) Vascular endothelial growth factor increases functional beta-cell mass by improvement of angiogenesis of isolated human and murine pancreatic islets. Transplantation 79:1530–1536

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Pareta RA, Wu R, Shi Y, Zhou X, Liu H, Deng C, Sun X, Atala A, Opara EC, Zhang Y (2013) Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials 34:1311–1326

    Article  PubMed  CAS  Google Scholar 

  • Melloul D (2004) Transcription factors in islet development and physiology: role of PDX-1 in beta-cell function. Ann N Y Acad Sci 1014:28–37

    Article  PubMed  CAS  Google Scholar 

  • Murai N, Ohtaki H, Watanabe J, Xu Z, Sasaki S, Yagura K, Shioda S, Nagasaka S, Honda K, Izumizaki M (2017) Intrapancreatic injection of human bone marrow-derived mesenchymal stem/stromal cells alleviates hyperglycemia and modulates the macrophage state in streptozotocin-induced type 1 diabetic mice. PLoS ONE 12:e186637

    Google Scholar 

  • Ouyang B, Sun X, Han D, Chen S, Yao B, Gao Y, Bian J, Huang Y, Zhang Y, Wan Z et al (2014) Human urine-derived stem cells alone or genetically-modified with FGF2 Improve type 2 diabetic erectile dysfunction in a rat model. PLoS ONE 9:e92825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park JY, Hong SM, Klimstra DS, Goggins MG, Maitra A, Hruban RH (2011) Pdx1 expression in pancreatic precursor lesions and neoplasms. Appl Immunohistochem Mol Morphol 19:444–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah SC, Malone JI, Simpson NE (1989) A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes mellitus. N Engl J Med 320:550–554

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Rani R (2017) Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells. Stem Cell Res Ther 8:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sui L, Danzl N, Campbell SR, Viola R, Williams D, Xing Y, Wang Y, Phillips N, Poffenberger G, Johannesson B et al (2018) Beta-cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes 67:26–35

    Article  PubMed  CAS  Google Scholar 

  • Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553

    Article  PubMed  CAS  Google Scholar 

  • Vanikar AV, Trivedi HL, Thakkar UG (2016) Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus. Cytotherapy 18:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Vendrame F, Hopfner YY, Diamantopoulos S, Virdi SK, Allende G, Snowhite IV, Reijonen HK, Chen L, Ruiz P, Ciancio G et al (2016) Risk factors for type 1 diabetes recurrence in immunosuppressed recipients of simultaneous pancreas-kidney transplants. Am J Transplant 16:235–245

    Article  PubMed  CAS  Google Scholar 

  • Vieira A, Courtney M, Druelle N, Avolio F, Napolitano T, Hadzic B, Navarro-Sanz S, Ben-Othman N, Collombat P (2016) Beta-cell replacement as a treatment for type 1 diabetes: an overview of possible cell sources and current axes of research. Diabetes Obes Metab 18(Suppl 1):137–143

    Article  PubMed  Google Scholar 

  • Wang C, Ling Z, Pipeleers D (2005) Comparison of cellular and medium insulin and GABA content as markers for living beta-cells. Am J Physiol Endocrinol Metab 288:E307–E313

    Article  PubMed  CAS  Google Scholar 

  • Wang HS, Shyu JF, Shen WS, Hsu HC, Chi TC, Chen CP, Huang SW, Shyr YM, Tang KT, Chen TH (2011) Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant 20:455–466

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Liang T, Lin X, Wen Q, Liang X, Li W, Qin F, Zheng N, Ming J, Huang R (2015) Effect of the total extract of Averrhoa carambola (oxalidaceae) root on the expression levels of TLR4 and NF-kappaB in streptozotocin-induced diabetic mice. Cell Physiol Biochem 36:2307–2316

    Article  PubMed  CAS  Google Scholar 

  • Yaochite JN, Caliari-Oliveira C, de Souza LE, Neto LS, Palma PV, Covas DT, Malmegrim KC, Voltarelli JC, Donadi EA (2015) Therapeutic efficacy and biodistribution of allogeneic mesenchymal stem cells delivered by intrasplenic and intrapancreatic routes in streptozotocin-induced diabetic mice. Stem Cell Res Ther 6:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ, Atala A (2008) Urine derived cells are a potential source for urological tissue reconstruction. J Urol 180:2226–2233

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Wei G, Li P, Zhou X, Zhang Y (2014) Urine-derived stem cells: a novel and versatile progenitor source for cell-based therapy and regenerative medicine. Genes Dis 1:8–17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Shanghai Nature Science Fund (16ZR1425800). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of Shanghai Jiao Tong University Affiliated Six People’s Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Animal studies were approved by the Animal Care Committee of Shanghai Jiao Tong University Affiliated Six People’s Hospital. All animals received human care in accordance with the Guidelines for the Care and Use of Laboratory Animals (NIH publication No. 86-23, revised 1985).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1602 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Luo, D., Sun, Y. et al. Human urine-derived stem cells play a novel role in the treatment of STZ-induced diabetic mice. J Mol Hist 49, 419–428 (2018). https://doi.org/10.1007/s10735-018-9772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-018-9772-5

Keywords

Navigation