Journal of Molecular Histology

, Volume 47, Issue 5, pp 437–444 | Cite as

A zebrafish mosaic assay to study mammalian stem cells in real time in vivo

  • Chun Xiao
  • Meilin Qian
  • Chaoran Yin
  • Yonggang Zhang
  • Huozhen Hu
  • Shaohua Yao
Review Paper


The differentiation potentials of stem cells have been evaluated by various in vivo and in vitro assays. However, these assays have different limitations hindering efficient study of mammalian stem cells. Here we describe a rapid and powerful mosaic assay to study the differentiation potentials of stem cells in real time in vivo by using zebrafish embryo. We transplanted mouse neural stem cells into zebrafish embryos at different developmental stages and found that they mainly formed neural tissues while occasionally trans-differentiated into mesoderm- and endoderm-derived tissues. Because zebrafish embryo is transparent, the behaviors of transplanted mouse stem cells can be easily tracked in a real-time manner and at single-cell resolution. We expect that this assay may be widely applied to explore the in vivo behaviors of any stem cells available.


Zebrafish chimera Transplantation Neural stem cell Trans-differentiation 



This work was funded by the National Natural Science Foundation of China (Nos. 81372143 and 31000646).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflictof interest.

Supplementary material

10735_2016_9688_MOESM1_ESM.tif (3.6 mb)
Supplementary material 1 (TIFF 3735 kb)
10735_2016_9688_MOESM2_ESM.tif (542 kb)
Supplementary material 2 (TIFF 542 kb)


  1. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537CrossRefPubMedGoogle Scholar
  2. Choi J, Kim S, Jung J, Lim Y, Kang K, Park S, Kang S (2011) Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. Biomaterials 32:7013–7022CrossRefPubMedGoogle Scholar
  3. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663CrossRefPubMedGoogle Scholar
  4. Funfak A, Brosing A, Brand M, Kohler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7:1132–1138CrossRefPubMedGoogle Scholar
  5. Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M, Mora M, De Angelis MG, Fiocco R, Cossu G, Vescovi AL (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991CrossRefPubMedGoogle Scholar
  6. Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9:139–151CrossRefPubMedGoogle Scholar
  7. Ho RK, Kimmel CB (1993) Commitment of cell fate in the early zebrafish embryo. Science 261:109–111CrossRefPubMedGoogle Scholar
  8. Hwang KC, Kim JY, Chang W, Kim DS, Lim S, Kang SM, Song BW, Ha HY, Huh YJ, Choi IG, Hwang DY, Song H, Jang Y, Chung N, Kim SH, Kim DW (2008) Chemicals that modulate stem cell differentiation. Proc Natl Acad Sci USA 105:7467–7471CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn: Off Publ Am Assoc Anat 203:253–310CrossRefGoogle Scholar
  10. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234CrossRefPubMedGoogle Scholar
  11. Lal S, La Du J, Tanguay RL, Greenwood JA (2012) Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J Neurosci Res 90:769–781CrossRefPubMedGoogle Scholar
  12. Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn: Off Publ Am Assoc Anat 233:1560–1570CrossRefGoogle Scholar
  13. Lee SL, Rouhi P, Dahl Jensen L, Zhang D, Ji H, Hauptmann G, Ingham P, Cao Y (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci USA 106:19485–19490CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liu NA, Jiang H, Ben-Shlomo A, Wawrowsky K, Fan XM, Lin S, Melmed S (2011) Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci USA 108:8414–8419CrossRefPubMedPubMedCentralGoogle Scholar
  15. Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67:2927–2931CrossRefPubMedGoogle Scholar
  16. Pichler FB, Laurenson S, Williams LC, Dodd A, Copp BR, Love DR (2003) Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol 21:879–883CrossRefPubMedGoogle Scholar
  17. Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, Muller M, Fontenay M, Chluba J, Solary E (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96:612–616CrossRefPubMedPubMedCentralGoogle Scholar
  18. Rouhi P, Jensen LD, Cao Z, Hosaka K, Lanne T, Wahlberg E, Steffensen JF, Cao Y (2010) Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc 5:1911–1918CrossRefPubMedGoogle Scholar
  19. Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123:2332–2341CrossRefPubMedPubMedCentralGoogle Scholar
  20. Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104CrossRefPubMedGoogle Scholar
  21. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  22. Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130:6155–6163CrossRefPubMedGoogle Scholar
  23. Tamplin OJ, White RM, Jing L, Kaufman CK, Lacadie SA, Li P, Taylor AM, Zon LI (2012) Small molecule screening in zebrafish: swimming in potential drug therapies. Wiley Interdiscip Rev Dev Biol 1:459–468CrossRefPubMedGoogle Scholar
  24. Tang DQ, Wang Q, Burkhardt BR, Litherland SA, Atkinson MA, Yang LJ (2012) In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cells 1:114–127PubMedPubMedCentralGoogle Scholar
  25. Tomita K, Madura T, Sakai Y, Yano K, Terenghi G, Hosokawa K (2013) Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience 236:55–65CrossRefPubMedGoogle Scholar
  26. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, EugeneGoogle Scholar
  27. Yu JM, Bunnell BA, Kang SK (2011) Neural differentiation of human adipose tissue-derived stem cells. Methods Mol Biol 702:219–231CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Chun Xiao
    • 1
  • Meilin Qian
    • 1
  • Chaoran Yin
    • 1
  • Yonggang Zhang
    • 1
  • Huozhen Hu
    • 1
  • Shaohua Yao
    • 1
  1. 1.College of life Science and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina

Personalised recommendations