Skip to main content

Advertisement

Log in

A zebrafish mosaic assay to study mammalian stem cells in real time in vivo

  • Review Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

An Erratum to this article was published on 24 November 2016

Abstract

The differentiation potentials of stem cells have been evaluated by various in vivo and in vitro assays. However, these assays have different limitations hindering efficient study of mammalian stem cells. Here we describe a rapid and powerful mosaic assay to study the differentiation potentials of stem cells in real time in vivo by using zebrafish embryo. We transplanted mouse neural stem cells into zebrafish embryos at different developmental stages and found that they mainly formed neural tissues while occasionally trans-differentiated into mesoderm- and endoderm-derived tissues. Because zebrafish embryo is transparent, the behaviors of transplanted mouse stem cells can be easily tracked in a real-time manner and at single-cell resolution. We expect that this assay may be widely applied to explore the in vivo behaviors of any stem cells available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Kim S, Jung J, Lim Y, Kang K, Park S, Kang S (2011) Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. Biomaterials 32:7013–7022

    Article  CAS  PubMed  Google Scholar 

  • Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Funfak A, Brosing A, Brand M, Kohler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7:1132–1138

    Article  CAS  PubMed  Google Scholar 

  • Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M, Mora M, De Angelis MG, Fiocco R, Cossu G, Vescovi AL (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991

    Article  CAS  PubMed  Google Scholar 

  • Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9:139–151

    Article  PubMed  Google Scholar 

  • Ho RK, Kimmel CB (1993) Commitment of cell fate in the early zebrafish embryo. Science 261:109–111

    Article  CAS  PubMed  Google Scholar 

  • Hwang KC, Kim JY, Chang W, Kim DS, Lim S, Kang SM, Song BW, Ha HY, Huh YJ, Choi IG, Hwang DY, Song H, Jang Y, Chung N, Kim SH, Kim DW (2008) Chemicals that modulate stem cell differentiation. Proc Natl Acad Sci USA 105:7467–7471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn: Off Publ Am Assoc Anat 203:253–310

    Article  CAS  Google Scholar 

  • Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Lal S, La Du J, Tanguay RL, Greenwood JA (2012) Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J Neurosci Res 90:769–781

    Article  CAS  PubMed  Google Scholar 

  • Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn: Off Publ Am Assoc Anat 233:1560–1570

    Article  CAS  Google Scholar 

  • Lee SL, Rouhi P, Dahl Jensen L, Zhang D, Ji H, Hauptmann G, Ingham P, Cao Y (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci USA 106:19485–19490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu NA, Jiang H, Ben-Shlomo A, Wawrowsky K, Fan XM, Lin S, Melmed S (2011) Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci USA 108:8414–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67:2927–2931

    Article  CAS  PubMed  Google Scholar 

  • Pichler FB, Laurenson S, Williams LC, Dodd A, Copp BR, Love DR (2003) Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol 21:879–883

    Article  CAS  PubMed  Google Scholar 

  • Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, Muller M, Fontenay M, Chluba J, Solary E (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouhi P, Jensen LD, Cao Z, Hosaka K, Lanne T, Wahlberg E, Steffensen JF, Cao Y (2010) Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc 5:1911–1918

    Article  CAS  PubMed  Google Scholar 

  • Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123:2332–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130:6155–6163

    Article  CAS  PubMed  Google Scholar 

  • Tamplin OJ, White RM, Jing L, Kaufman CK, Lacadie SA, Li P, Taylor AM, Zon LI (2012) Small molecule screening in zebrafish: swimming in potential drug therapies. Wiley Interdiscip Rev Dev Biol 1:459–468

    Article  CAS  PubMed  Google Scholar 

  • Tang DQ, Wang Q, Burkhardt BR, Litherland SA, Atkinson MA, Yang LJ (2012) In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cells 1:114–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita K, Madura T, Sakai Y, Yano K, Terenghi G, Hosokawa K (2013) Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience 236:55–65

    Article  CAS  PubMed  Google Scholar 

  • Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene

    Google Scholar 

  • Yu JM, Bunnell BA, Kang SK (2011) Neural differentiation of human adipose tissue-derived stem cells. Methods Mol Biol 702:219–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Nos. 81372143 and 31000646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huozhen Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflictof interest.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10735-016-9704-1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 3735 kb)

Supplementary material 2 (TIFF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Qian, M., Yin, C. et al. A zebrafish mosaic assay to study mammalian stem cells in real time in vivo. J Mol Hist 47, 437–444 (2016). https://doi.org/10.1007/s10735-016-9688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-016-9688-x

Keywords

Navigation