Journal of Molecular Histology

, Volume 47, Issue 2, pp 203–211 | Cite as

Gestational protein restriction alters cell proliferation in rat placenta

  • Hércules Jonas Rebelato
  • Marcelo Augusto Marreto Esquisatto
  • Eloá Fernanda de Sousa Righi
  • Rosana Catisti
Original Paper


We recently showed that gestational protein restriction (GPR) alters the structure of the rat placenta on day 19 of gestation (dG). The aim of the study was to investigate the spatial and temporal immunolocalization of proliferating cell antigen Ki67 in normal and GPR placental development. Pregnant Wistar rats were divided into two groups: normal (NP, 17 % casein) or low-protein diet (LP, 6 % casein). Placentas and fetus were collected and weighed at 15, 17, 19 and 21 dG. Morphological, morphometric and ultrastructural analyses were performed. Immunoperoxidase was used to identify nuclear antigen Ki67 in placental sections. We observed a significant reduction in the number of trophoblast giant cells and glycogen cells in the LP group. Placental weight was significantly reduced only at 17 dG in the LP group, in parallel to a decrease in glycogen cells. From 15 to 21 dG, the thickness of the junctional zone (JZ) decreased in NP and LP animals, while that of the labyrinth zone (LZ) increased in parallel to a reduction in the number of proliferating cells in this LZ zone. GPR significantly inhibits cell proliferation in the JZ, especially at 15 and 17 dG. The ultrastructural appearance of the cytoplasm of giant and cytotrophoblastic cells indicates degeneration from 15 to 21 dG and this effect is enhanced in LP animals suggesting early aging. Offspring of NP dams were significantly heavier than offspring of LP dams at 21 dG. GPR causes modifications in specific regions of the placenta, cell proliferation inhibition and fetal growth restriction.


Placenta Cell proliferation Protein restriction Pregnancy Rat Morphology 



The authors thank Daniela Neodini and Renata Barbieri for excellent technical assistance, and Prof. Dr. Paulo P. Joazeiro, IB, Universidade Estadual de Campinas, Campinas, Brazil, for help with the ultrastructural study. This work was partially supported by grants from the Brazilian funding agencies FHO-Uniararas. EFSR was recipient of undergraduate fellowships from Programa Iniciação Científica do Conselho Nacional de Pesquisa (PIBIC/CNPq).


  1. Belkacemi L, Chen CH, Ross MG, Desai M (2009) Increased placental apoptosis in maternal food restricted gestations: role of the Fas pathway. Placenta 30(9):739–751. doi: 10.1016/j.placenta.2009.06.003 CrossRefPubMedGoogle Scholar
  2. Belkacemi L, Jelks A, Chen CH, Ross MG, Desai M (2011) Altered placental development in undernourished rats: the role of maternal glucocorticoids. Reprod Biol Endocrinol 9:105. doi: 10.1186/1477-7827-9-105 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Burton GJ, Fowden AL (2012) Review: the placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta 33:S23–S27. doi: 10.1016/j.placenta.2011.11.013 CrossRefPubMedGoogle Scholar
  4. Davies J, Glasser SR (1968) Histological and fine structural observations on the placenta of the rat. Acta Anat (Basel) 69:542–608CrossRefGoogle Scholar
  5. de Rijk EP, van Esch E, Flik G (2002) Pregnancy dating in the rat: placental morphology and maternal blood parameters. Toxicol Pathol 30(2):271–282CrossRefPubMedGoogle Scholar
  6. Fowden AL, Forhead AJ (2009) Endocrine regulations of feto-placental growth. Horm Res 72(5):257–265. doi: 10.1159/000245927 CrossRefPubMedGoogle Scholar
  7. Gao H, Yallampalli U, Yallampalli C (2013) Gestational protein restriction affects trophoblast differentiation. Front Biosci (Elite Ed) 5:591–601Google Scholar
  8. Jones HN, Ashworth CJ, Page KR, McArdle HJ (2006) Cortisol stimulates system A amino acid transport and SNAT2 expression in a human placental cell line. Am J Physiol Endocrinol Metab 291:596–603CrossRefGoogle Scholar
  9. Lesage J, Blondeau B, Grino M, Breant B, Dupouy JP (2001) Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology 142:1692–1702PubMedGoogle Scholar
  10. Mark PJ, Jones ML, Lewis JL, Waddell BJ, Smith JT (2013) Kiss1 and Kiss1r mRNA expression in the rat placenta: changes with gestational age and regulation by glucocorticoids. Placenta 34(8):657–662. doi: 10.1016/j.placenta.2013.04.012 CrossRefPubMedGoogle Scholar
  11. Matt DW, Macdonald GJ (1985) Placental steroid production by the basal and labyrinth zones during the latter third of gestation in the rat. Biol Reprod 32(4):969–977CrossRefPubMedGoogle Scholar
  12. McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M, Kilby MD, Stewart PM (2001) Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab 86(10):4979–4983PubMedGoogle Scholar
  13. Miller J, Turan S, Baschat AA (2008) Fetal growth restriction. Semin Perinatol 32(4):274–280. doi: 10.1053/j.semperi.2008.04.010 CrossRefPubMedGoogle Scholar
  14. Myatt L (2006) Placental adaptive responses and fetal programming. J Physiol 572:25–30CrossRefPubMedPubMedCentralGoogle Scholar
  15. Neaves WB, Billingham RE (1979) Transplantation of the testis. Transplantation 28(3):163–165CrossRefPubMedGoogle Scholar
  16. Ni XT, Duan T, Yang Z, Guo CM, Li JN, Sun K (2009) Role of human chorionic gonadotropin in maintaining 11β hydroxysteroid-dehydrogenase type 2 expression in human placental syncytiotrophoblasts. Placenta 30:1023–1028. doi: 10.1016/j.placenta.2009.10.005 CrossRefPubMedGoogle Scholar
  17. Nolten WE, Rueckert PA (1981) Elevated free cortisol index in pregnancy: possible regulatory mechanisms. Am J Obstet Gynecol 139(4):492–498CrossRefPubMedGoogle Scholar
  18. Rebelato HJ, Esquisatto MAM, Moraes C, Amaral MEC, Catisti R (2013) Gestational protein restriction induces alterations in placental morphology and mitochondrial function in rats during late pregnancy. J Mol Histol 44(6):629–637. doi: 10.1007/510735-013-9522-7 CrossRefPubMedGoogle Scholar
  19. Reeves PG, Rossow KL, Lindlauf J (1993) Development and testing of the AIN-93 purified diets for rodents: results on growth, kidney calcification and bone mineralization in rats and mice. J Nutr 123(11):1923–1931PubMedGoogle Scholar
  20. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  21. Seckl JR, Holmes MC (2007) Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab 3(6):479–488CrossRefPubMedGoogle Scholar
  22. Seckl JR, Meaney MJ (2004) Glucocorticoid programming. Ann N Y Acad Sci 1032:63–84CrossRefPubMedGoogle Scholar
  23. Unek G, Ozmen A, Kipmen-Korgun D, Korgun ET (2012) Immunolocalization of PCNA, Ki67, p27 and p57 in normal and dexamethasone-induced intrauterine growthrestriction placental development in rat. Acta Histochem 114(1):31–40. doi: 10.1016/j.acthis.2011.02.002 CrossRefPubMedGoogle Scholar
  24. Unek G, Ozmen A, Mendilcioglu I, Simsek M, Korgun ET (2014) Immunohistochemical distribution of cell cycle proteins p27, p57, cyclin D3, PCNA and Ki67 in normal and diabetic human placentas. J Mol Histol 45(1):21–34. doi: 10.1007/s10735-013-9534-3 CrossRefPubMedGoogle Scholar
  25. Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65:1339–1348CrossRefPubMedGoogle Scholar
  26. Wyrwoll CS, Seckl JR, Holmes MC (2009) Altered placental function of 11βhydroxysteroid dehydrogenase 2 knocknout mice. Endocrinology 150:1287–1293. doi: 10.1210/en.2008-1100 CrossRefPubMedGoogle Scholar
  27. Zorn TMT, Zúñiga M, Madrid E, Tostes R, Fortes Z, Giachini F, San Martín S (2011) Maternal diabetes affects cell proliferation in developing rat placenta. Histol Histopathol 26:1049–1056PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hércules Jonas Rebelato
    • 1
  • Marcelo Augusto Marreto Esquisatto
    • 1
  • Eloá Fernanda de Sousa Righi
    • 1
  • Rosana Catisti
    • 1
  1. 1.Biomedical Sciences Graduate ProgramCentro Universitário Hermínio Ometto, UNIARARASArarasBrazil

Personalised recommendations