Journal of Molecular Histology

, Volume 47, Issue 1, pp 21–33 | Cite as

Diabetes-induced changes in the morphology and nociceptinergic innervation of the rat uterus

  • Saeed Tariq
  • Syed M. Nurulain
  • Hameed Rashed
  • Mohamed Lotfy
  • Starling Bright Emerald
  • Surya Koturan
  • Kornélia Tekes
  • Ernest Adeghate
Original Paper


The prevalence of diabetes mellitus (DM) is about 6 % across the globe. This prevalence has been reported to increase in the near future. This means that the number of women with DM who would like to get pregnant and have children will also increase. The present study is aimed at investigating the morphological changes observed in the uterus after the onset of DM. The study also examined the pattern of distribution of nociceptin (NC), a neuropeptide involved in the regulation of pain, a major physiological factor during parturition. The study shows a severe atrophy of uteri as early as 15 days post DM and continued until the termination of the eight-week study. This atrophy was confirmed by light microscopy. Electron microscopy study showed atrophy of the columnar cells of the endometrium, reduced myofibril number and destruction of smooth muscle cells in the myometrium of diabetic rats compared to control. Immunofluorescence and immunoelectron microscopy studies clearly demonstrated the presence of NC in the endometrium, myometrium and on the myofibrils of the smooth muscles of both control and diabetic rat uteri. In addition, NC-positive neurons and varicose fibres were observed in the myometrium of both normal and diabetic rats. However, the expression of NC decreased after the onset of DM. Morphometric analysis showed that the number of NC-labeled cells was significantly (p < 0.05) lower in diabetic rat uteri compared to those of control. In conclusion, DM-induced uterine atrophy is associated with a decrease in the expression of NC in cells, neurons and myofibrils of the rat uterus.


Nociceptin Diabetics Uterus Neuropeptide Electron microscopy Immunofluorescence Atrophy 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 5th Edition of the Diabetes Atlas released on World Diabetes Day. In: Int. Diabetes Fed. Accessed 27 May 2015
  2. Adeghate E, Ponery AS (2001) The role of leucine-enkephalin on insulin and glucagon secretion from pancreatic tissue fragments of normal and diabetic rats. Arch Physiol Biochem 109:223–229. doi: 10.1076/apab. PubMedCrossRefGoogle Scholar
  3. Adeghate E, Ponery A (2004) Diabetes mellitus influences the degree of colocalization of calcitonin gene-related peptide with insulin and somatostatin in the rat pancreas. Pancreas 29:311–319PubMedCrossRefGoogle Scholar
  4. Adeghate E, Hameed RS, Ponery AS et al (2010) Streptozotocin causes pancreatic beta cell failure via early and sustained biochemical and cellular alterations. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc 118:699–707. doi: 10.1055/s-0030-1253395 CrossRefGoogle Scholar
  5. Al-Qahtani S, Heath A, Quenby S et al (2012) Diabetes is associated with impairment of uterine contractility and high Caesarean section rate. Diabetologia 55:489–498. doi: 10.1007/s00125-011-2371-6 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Berzetei-Gurske IP, Schwartz RW, Toll L (1996) Determination of activity for nociceptin in the mouse vas deferens. Eur J Pharmacol 302:R1–R2PubMedCrossRefGoogle Scholar
  7. Chesterfield M, Janik J, Murphree E, Lynn C, Schmidt E, Callahan P (2006) Orphanin FQ/nociceptin is a physiological regulator of prolactin secretion in female rats. Endocrinology 147:5087–5093PubMedCrossRefGoogle Scholar
  8. Deák BH, Klukovits A, Tekes K et al (2013) Nocistatin inhibits pregnant rat uterine contractions in vitro: roles of calcitonin gene-related peptide and calcium-dependent potassium channel. Eur J Pharmacol 714:96–104. doi: 10.1016/j.ejphar.2013.05.037 PubMedCrossRefGoogle Scholar
  9. Dumont M, Lemaire S (1998) Characterization of the high affinity [3H] nociceptin binding site in membrane preparations of rat heart: correlations with the non-opioid dynorphin binding site. J Mol Cell Cardiol 30:2751–2760. doi: 10.1006/jmcc.1998.0838 PubMedCrossRefGoogle Scholar
  10. Emerald BS, Chen Y, Zhu T et al (2007) AlphaCP1 mediates stabilization of hTERT mRNA by autocrine human growth hormone. J Biol Chem 282:680–690. doi: 10.1074/jbc.M600224200 PubMedCrossRefGoogle Scholar
  11. Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083PubMedCrossRefGoogle Scholar
  12. Favaro RR, Salgado RM, Raspantini PR et al (2010) Effects of long-term diabetes on the structure and cell proliferation of the myometrium in the early pregnancy of mice. Int J Exp Pathol 91:426–435. doi: 10.1111/j.1365-2613.2010.00718.x PubMedPubMedCentralCrossRefGoogle Scholar
  13. Foradori CD, Amstalden M, Coolen LM et al (2007) Orphanin FQ: evidence for a role in the control of the reproductive neuroendocrine system. Endocrinology 148:4993–5001. doi: 10.1210/en.2007-0011 PubMedCrossRefGoogle Scholar
  14. Garris DR, West RL, Pekala PH (1986) Ultrastructural and metabolic changes associated with reproductive tract atrophy and adiposity in diabetic female mice. Anat Rec 216:359–366. doi: 10.1002/ar.1092160304 PubMedCrossRefGoogle Scholar
  15. Giuliani S, Lecci A, Tramontana M, Maggi CA (1998) The inhibitory effect of nociceptin on the micturition reflex in anaesthetized rats. Br J Pharmacol 124:1566–1572. doi: 10.1038/sj.bjp.0701983 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84. doi: 10.1016/S0140-6736(08)60074-4 PubMedCrossRefGoogle Scholar
  17. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–139Google Scholar
  18. Kim S-J, Ju A, Lim S-G, Kim D-J (2013) Chronic alcohol consumption, type 2 diabetes mellitus, insulin-like growth factor-I (IGF-I), and growth hormone (GH) in ethanol-treated diabetic rats. Life Sci 93:778–782. doi: 10.1016/j.lfs.2013.09.018 PubMedCrossRefGoogle Scholar
  19. Klukovits A, Tekes K, Gündüz Cinar O et al (2010) Nociceptin inhibits uterine contractions in term-pregnant rats by signaling through multiple pathways. Biol Reprod 83:36–41. doi: 10.1095/biolreprod.109.082222 PubMedCrossRefGoogle Scholar
  20. Lecci A, Giuliani S, Tramontana M et al (2000) Tachykinin-mediated effect of nociceptin in the rat urinary bladder in vivo. Eur J Pharmacol 389:99–102PubMedCrossRefGoogle Scholar
  21. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414PubMedPubMedCentralCrossRefGoogle Scholar
  22. Mollereau C, Mouledous L (2000) Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides 21:907–917PubMedCrossRefGoogle Scholar
  23. Netti C, Rapetti D, Sibilia V et al (2002) Endocrine effects of centrally injected nociceptin in the rat. Brain Res 938:55–61PubMedCrossRefGoogle Scholar
  24. Osinski MA, Brown DR (2000) Orphanin FQ/nociceptin: a novel neuromodulator of gastrointestinal function? Peptides 21:999–1005PubMedCrossRefGoogle Scholar
  25. Osinski MA, Pampusch MS, Murtaugh MP, Brown DR (1999) Cloning, expression and functional role of a nociceptin/orphanin FQ receptor in the porcine gastrointestinal tract. Eur J Pharmacol 365:281–289PubMedCrossRefGoogle Scholar
  26. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212PubMedPubMedCentralCrossRefGoogle Scholar
  27. Rizzi A, Calò G, Trevisani M et al (1999) Nociceptin receptor activation inhibits tachykinergic non adrenergic non cholinergic contraction of guinea pig isolated bronchus. Life Sci 64:PL157–PL163PubMedCrossRefGoogle Scholar
  28. Sjostrand FS (1956) A method to improve contrast in high resolution electron microscopy of ultrathin tissue sections. Exp Cell Res 10:657–664PubMedCrossRefGoogle Scholar
  29. Takahashi T, Bagnol D, Schneider D et al (2000) Orphanin FQ causes contractions via inhibiting purinergic pathway in the rat colon. Gastroenterology 119:1054–1063PubMedCrossRefGoogle Scholar
  30. Taniguchi H, Yomota E, Nogi K et al (1998) The effect of nociceptin, an endogenous ligand for the ORL1 receptor, on rat colonic contraction and transit. Eur J Pharmacol 353:265–271PubMedCrossRefGoogle Scholar
  31. Tariq S, Nurulain SM, Tekes K, Adeghate E (2013) Deciphering intracellular localization and physiological role of nociceptin and nocistatin. Peptides 43:174–183. doi: 10.1016/j.peptides.2013.02.010 PubMedCrossRefGoogle Scholar
  32. Tatewaki R, Otani H, Tanaka O, Kitada J (1989) A morphological study on the reproductive organs as a possible cause of developmental abnormalities in diabetic NOD mice. Histol Histopathol 4:343–358PubMedGoogle Scholar
  33. Tekes K, Hantos M, Gyenge M et al (2005) Diabetes and endogenous orphanin FQ/nociceptin levels in rat CSF and plasma. Int J Diabetes Metab 13:147–153Google Scholar
  34. Wang JB, Johnson PS, Imai Y et al (1994) cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett 348:75–79PubMedCrossRefGoogle Scholar
  35. Yüce B, Sibaev A, Haaken A et al (2007) ORL-1 receptor mediates the action of nociceptin on ascending myenteric reflex pathways in rats. Gastroenterology 133:574–586. doi: 10.1053/j.gastro.2007.05.016 PubMedCrossRefGoogle Scholar
  36. Zamboni L, de Martino C (1967) Buffered picric acid-formaldehyde: a new rapid fixation for electron microscopy. J Cell Biol 35:148AGoogle Scholar
  37. Zhang G, Murray TF, Grandy DK (1997) Orphanin FQ has an inhibitory effect on the guinea pig ileum and the mouse vas deferens. Brain Res 772:102–106PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Saeed Tariq
    • 1
  • Syed M. Nurulain
    • 2
  • Hameed Rashed
    • 1
  • Mohamed Lotfy
    • 3
  • Starling Bright Emerald
    • 1
  • Surya Koturan
    • 1
  • Kornélia Tekes
    • 4
  • Ernest Adeghate
    • 1
  1. 1.Department of Anatomy, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  2. 2.Department of Pharmacology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  3. 3.Department of Biology, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  4. 4.Department of PharmacodynamicsSemmelweis UniversityBudapestHungary

Personalised recommendations