Advertisement

Journal of Molecular Histology

, Volume 46, Issue 4–5, pp 325–335 | Cite as

Upregulated expression of ILF2 in non-small cell lung cancer is associated with tumor cell proliferation and poor prognosis

  • Tingting Ni
  • Guoxin Mao
  • Qun Xue
  • Yifei Liu
  • Buyou Chen
  • Xuefan Cui
  • Liting Lv
  • Liangliang Jia
  • Yuchan Wang
  • Lili Ji
Original Paper

Abstract

ILF2 (NF45) is a sequence-specific DNA binding protein that is involved in mitosis control, transcriptional regulation, DNA breaks repair, microRNA processing and viral replication. In the present study, we aim to investigate the potential role of ILF2 in the progression of non–small cell lung cancer (NSCLC). Western blot analysis indicated that ILF2 was up-regulated in NSCLC tissues, compared with adjacent non-tumorous ones. Furthermore, immunohistochemistry analysis showed that the expression of ILF2 was correlated with histological differentiation, clinical stage and Ki-67 expression in NSCLC specimens. In addition, using Kaplan–Meier survival analysis, we found that high expression of ILF2 predicted poor outcome in NSCLC patients. Furthermore, we showed that up-regulated expression of ILF2 might play a regulatory role in the proliferation of NSCLC cells using serum starvation and release assay. Moreover, knockdown of ILF2 inhibited cell proliferation and cell cycle progress of NSCLC cells. In conclusion, our results indicated that ILF2 was involved in the pathogenesis of NSCLC and might be a potential target for NSCLC therapy.

Keywords

ILF2 NSCLC Prognosis Proliferation 

Notes

Acknowledgments

Supported by Grants from the National Natural Science Foundation of China (No. 81201858); Natural Scientific Foundation of Jiangsu Province Grant (No. BK2012231).

Conflict of interest

The authors declare no conflict of interest.

References

  1. Aaboe M, Marcussen N, Jensen KM, Thykjaer T, Dyrskjot L, Orntoft TF (2005) Gene expression profiling of noninvasive primary urothelial tumours using microarrays. Br J Cancer 93:1182–1190PubMedCentralCrossRefPubMedGoogle Scholar
  2. Barber GN (2009) The NFAR’s (nuclear factors associated with dsRNA): evolutionarily conserved members of the dsRNA binding protein family. RNA Biol 6:35–39CrossRefPubMedGoogle Scholar
  3. Cai J et al (2013) miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res 73:5402–5415CrossRefPubMedGoogle Scholar
  4. Chung FH, Lee HH, Lee HC (2013) ToP: a trend-of-disease-progression procedure works well for identifying cancer genes from multi-state cohort gene expression data for human colorectal cancer. PLoS One 8:e65683PubMedCentralCrossRefPubMedGoogle Scholar
  5. DeGregori J, Kowalik T, Nevins JR (1995) Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 15:4215–4224PubMedCentralPubMedGoogle Scholar
  6. Faye MD, Graber TE, Liu P, Thakor N, Baird SD, Durie D, Holcik M (2013) Nucleotide composition of cellular internal ribosome entry sites defines dependence on NF45 and predicts a posttranscriptional mitotic regulon. Mol Cell Biol 33:307–318PubMedCentralCrossRefPubMedGoogle Scholar
  7. Fung LF, Lo AK, Yuen PW, Liu Y, Wang XH, Tsao SW (2000) Differential gene expression in nasopharyngeal carcinoma cells. Life Sci 67:923–936CrossRefPubMedGoogle Scholar
  8. Guan D et al (2008) Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol Cell Biol 28:4629–4641PubMedCentralCrossRefPubMedGoogle Scholar
  9. Guo NL et al (2008) Confirmation of gene expression-based prediction of survival in non-small cell lung cancer. Clin Cancer Res 14:8213–8220PubMedCentralCrossRefPubMedGoogle Scholar
  10. Guo Y et al (2012) Correlations among ERCC1, XPB, UBE2I, EGF, TAL2 and ILF3 revealed by gene signatures of histological subtypes of patients with epithelial ovarian cancer. Oncol Rep 27:286–292PubMedGoogle Scholar
  11. Hu Q et al (2013) Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression. Oncogene 32:3933–3943CrossRefPubMedGoogle Scholar
  12. Hu B, Mu HP, Zhang YQ, Su CY, Song JT, Meng C, Liu DX (2014) Prognostic significance of TBX2 expression in non-small cell lung cancer. J Mol Histol 45:421–426CrossRefPubMedGoogle Scholar
  13. Huang Q et al (2014) Expression of NF45 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth. Tumour Biol 35:10149–10157CrossRefPubMedGoogle Scholar
  14. Janku F, Stewart DJ, Kurzrock R (2010) Targeted therapy in non-small-cell lung cancer–is it becoming a reality? Nat Rev Clin Oncol 7:401–414CrossRefPubMedGoogle Scholar
  15. Ji L et al (2014) Transformer 2beta (Tra2beta/SFRS10) positively regulates the progression of NSCLC via promoting cell proliferation. J Mol Histol 45:573–582CrossRefPubMedGoogle Scholar
  16. Jiang W et al (2014) Regulation of cell cycle of hepatocellular carcinoma by NF90 through modulation of cyclin E1 mRNA stability. Oncogene. doi: 10.1038/onc.2014.373
  17. Kao PN, Chen L, Brock G, Ng J, Kenny J, Smith AJ, Corthesy B (1994) Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. J Biol Chem 269:20691–20699PubMedGoogle Scholar
  18. Kim IM et al (2006) The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 66:2153–2161CrossRefPubMedGoogle Scholar
  19. Kuzuhara T, Suganuma M, Kurusu M, Fujiki H (2007) Helicobacter pylori-secreting protein Tipalpha is a potent inducer of chemokine gene expressions in stomach cancer cells. J Cancer Res Clin Oncol 133:287–296CrossRefPubMedGoogle Scholar
  20. Lee YY et al (2011) Subcellular tissue proteomics of hepatocellular carcinoma for molecular signature discovery. J Proteome Res 10:5070–5083CrossRefPubMedGoogle Scholar
  21. Li W et al (2013) TRAF4 is a critical molecule for Akt activation in lung cancer. Cancer Res 73:6938–6950CrossRefPubMedGoogle Scholar
  22. Liu Y et al (2013) Vacuolar protein sorting 4B, an ATPase protein positively regulates the progression of NSCLC via promoting cell division. Mol Cell Biochem 381:163–171CrossRefPubMedGoogle Scholar
  23. Lopez-Fernandez LA, Parraga M, del Mazo J (2002) Ilf2 is regulated during meiosis and associated to transcriptionally active chromatin. Mech Dev 111:153–157CrossRefPubMedGoogle Scholar
  24. Ni S et al (2015) Expression and clinical role of NF45 as a novel cell cycle protein in esophageal squamous cell carcinoma (ESCC). Tumour Biol 36:747–756CrossRefPubMedGoogle Scholar
  25. Osada H, Takahashi T (2002) Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene 21:7421–7434CrossRefPubMedGoogle Scholar
  26. Sakamoto S et al (2009) The NF90–NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 29:3754–3769PubMedCentralCrossRefPubMedGoogle Scholar
  27. Shamanna RA, Hoque M, Lewis-Antes A, Azzam EI, Lagunoff D, Pe’ery T, Mathews MB (2011) The NF90/NF45 complex participates in DNA break repair via nonhomologous end joining. Mol Cell Biol 31:4832–4843PubMedCentralCrossRefPubMedGoogle Scholar
  28. Shim C, Zhang W, Rhee CH, Lee JH (1998) Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin Cancer Res 4:3045–3050PubMedGoogle Scholar
  29. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30CrossRefPubMedGoogle Scholar
  30. Stricker RL, Behrens SE, Mundt E (2010) Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication. J Virol 84:10592–10605PubMedCentralCrossRefPubMedGoogle Scholar
  31. Takamizawa J et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756CrossRefPubMedGoogle Scholar
  32. Vumbaca F, Phoenix KN, Rodriguez-Pinto D, Han DK, Claffey KP (2008) Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol Cell Biol 28:772–783PubMedCentralCrossRefPubMedGoogle Scholar
  33. Wang HJ, Shao JZ, Xiang LX, Shen J (2006) Molecular cloning, characterization and expression analysis of an ILF2 homologue from Tetraodon nigroviridis. J Biochem Mol Biol 39:686–695CrossRefPubMedGoogle Scholar
  34. Wang Y et al (2013) Interaction with cyclin H/cyclin-dependent kinase 7 (CCNH/CDK7) stabilizes C-terminal binding protein 2 (CtBP2) and promotes cancer cell migration. J Biol Chem 288:9028–9034PubMedCentralCrossRefPubMedGoogle Scholar
  35. Wang J et al (2014) The reverse effect of X-ray irradiation on acquired gefitinib resistance in non-small cell lung cancer cell line NCI-H1975 in vitro. J Mol Histol 45:641–652CrossRefPubMedGoogle Scholar
  36. Wood SL, Pernemalm M, Crosbie PA, Whetton AD (2014) The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev 40:558–566CrossRefPubMedGoogle Scholar
  37. Zhang T, Zhang DM, Zhao D, Hou XM, Liu XJ, Ling XL, Ma SC (2014) The prognostic value of osteopontin expression in non-small cell lung cancer: a meta-analysis. J Mol Histol 45:533–540CrossRefPubMedGoogle Scholar
  38. Zhao G, Shi L, Qiu D, Hu H, Kao PN (2005) NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function. Exp Cell Res 305:312–323CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Tingting Ni
    • 1
  • Guoxin Mao
    • 1
  • Qun Xue
    • 3
  • Yifei Liu
    • 2
  • Buyou Chen
    • 1
  • Xuefan Cui
    • 4
  • Liting Lv
    • 1
  • Liangliang Jia
    • 4
  • Yuchan Wang
    • 2
  • Lili Ji
    • 2
  1. 1.Department of OncologyAffiliated Hospital of Nantong UniversityNantongChina
  2. 2.Department of Pathology, Medical CollegeNantong UniversityNantongChina
  3. 3.Department of Thoracic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
  4. 4.Department of Respiratory Diseases, First Affiliated HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations