Journal of Molecular Histology

, Volume 45, Issue 6, pp 627–640 | Cite as

Expression of cytokeratin 8, vimentin, syndecan-1 and Ki-67 during human tooth development

  • D. Kero
  • D. Kalibovic Govorko
  • K. Vukojevic
  • M. Cubela
  • V. Soljic
  • M. Saraga-Babic
Original Paper


Spatio-temporal immunolocalizations of cytokeratin 8 (CK8), vimentin, syndecan-1 and Ki-67 were analyzed in ten human incisors and canine tooth germs between the 7th and 20th developmental weeks. CK8 expression was mild to moderate in the epithelial tooth parts, while it shifted from absent or mild in its mesenchymal parts, but few cells, sparsely distributed throughout the tooth germ, strongly expressed CK8. As development progressed, CK8 expression increased to strong in preameloblasts, while expression of vimentin increased to moderate in the epithelial and mesenchymal tooth parts, particularly in the dental papilla and sac. Co-expression of CK8 and vimentin was observed in some parts of the tooth germ, and was increasing in the differentiating preameloblasts and preodontoblasts. Syndecan-1 showed characteristic shift of expression from epithelial to mesenchymal tooth parts, being particularly strong in dental papilla, sac and cervical loops, while co-expression of Ki-67/syndecan-1 was strong in the dental papilla. Our study demonstrated spatio-temporal expression and restricted co-expression of the investigated markers, indicating participation of CK8 and vimentin in cell proliferation and migration, and differentiation of preodontoblasts and preameloblasts. Our data also suggest involvement of syndecan-1 in morphogenesis of the developing tooth crown and cervical loops, and together with CK8 and vimentin in differentiation of preameloblasts and preodontoblasts.


Human tooth germ Cytokeratin 8 Vimentin Syndecan-1 Ki-67 



The authors thank Mrs. Asja Miletic for expert technical assistance. This work was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant no. 021-2160528-0507, main investigator Mirna Saraga-Babic).


  1. Aznavoorian S, Stracke ML, Krutzsch H, Schiffmann E, Liotta LA (1990) Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J Cell Biol 110(4):1427–1438PubMedCrossRefGoogle Scholar
  2. Bai XM, Van der Schueren B, Cassiman JJ, Van den Berghe H, David G (1994) Differential expression of multiple cell-surface heparan sulfate proteoglycans during embryonic tooth development. J Histochem Cytochem 42(8):1043–1054PubMedCrossRefGoogle Scholar
  3. Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8:365–393. doi: 10.1146/annurev.cb.08.110192.002053 PubMedCrossRefGoogle Scholar
  4. Berteretche MV, Dunia I, Devilliers G, van der Kemp A, Pieper F, Bloemendal H, Benedetti EL, Forest N (1993) Abnormal incisor-tooth differentiation in transgenic mice expressing the muscle-specific desmin gene. Eur J Cell Biol 62(2):183–193PubMedGoogle Scholar
  5. Brauker JH, Trautman MS, Bernfield M (1991) Syndecan, a cell surface proteoglycan, exhibits a molecular polymorphism during lung development. Dev Biol 147(2):285–292PubMedCrossRefGoogle Scholar
  6. Buchtova M, Stembirek J, Glocova K, Matalova E, Tucker AS (2012) Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res 91(5):491–498. doi: 10.1177/0022034512442896 PubMedCrossRefGoogle Scholar
  7. Carev D, Saraga M, Saraga-Babic M (2008) Expression of intermediate filaments, EGF and TGF-alpha in early human kidney development. J Mol Histol 39(2):227–235. doi: 10.1007/s10735-007-9157-7 PubMedCrossRefGoogle Scholar
  8. Couwenhoven R, Schwartz SA (1988) Developmental-specific expression and immunoreactivity of keratins during odontogenesis in rat embryos. Arch Oral Biol 33(1):57–63PubMedCrossRefGoogle Scholar
  9. David G, Bai XM, Van der Schueren B, Marynen P, Cassiman JJ, Van den Berghe H (1993) Spatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development. Development 119(3):841–854PubMedGoogle Scholar
  10. Doherty GJ, McMahon HT (2008) Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu Rev Biophys 37:65–95. doi: 10.1146/annurev.biophys.37.032807.125912 PubMedCrossRefGoogle Scholar
  11. Domingues MG, Jaeger MM, Araujo VC, Araujo NS (2000) Expression of cytokeratins in human enamel organ. Eur J Oral Sci 108(1):43–47PubMedCrossRefGoogle Scholar
  12. Dore JM, Morard F, Vita N, Wijdenes J (1998) Identification and location on syndecan-1 core protein of the epitopes of B-B2 and B-B4 monoclonal antibodies. FEBS Lett 426(1):67–70PubMedCrossRefGoogle Scholar
  13. Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119(7):1763–1771. doi: 10.1172/JCI38339 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Franke WW, Grund C, Kuhn C, Jackson BW, Illmensee K (1982) Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation 23(1):43–59PubMedCrossRefGoogle Scholar
  15. Gilbert S, Loranger A, Daigle N, Marceau N (2001) Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154(4):763–773. doi: 10.1083/jcb.200102130 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Guven G, Gunhan O, Akbulut E, Cehreli ZC (2007) Investigation of proliferative activity in the developing human tooth using Ki-67 immunostaining. Med Princ Pract 16(6):454–459. doi: 10.1159/000107751 PubMedCrossRefGoogle Scholar
  17. Hall BK, Miyake T (1995) Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int J Dev Biol 39(6):881–893PubMedGoogle Scholar
  18. Heikinheimo K, Hormia M, Stenman G, Virtanen I, Happonen RP (1989) Patterns of expression of intermediate filaments in ameloblastoma and human fetal tooth germ. J Oral Pathol Med 18(5):264–273PubMedCrossRefGoogle Scholar
  19. Heikinheimo K, Sandberg M, Happonen RP, Virtanen I, Bosch FX (1991) Cytoskeletal gene expression in normal and neoplastic human odontogenic epithelia. Lab Invest 65(6):688–701PubMedGoogle Scholar
  20. Hosoya A, Kwak S, Kim EJ, Lunny DP, Lane EB, Cho SW, Jung HS (2010) Immunohistochemical localization of cytokeratins in the junctional region of ectoderm and endoderm. Anat Rec (Hoboken) 293(11):1864–1872. doi: 10.1002/ar.21233 CrossRefGoogle Scholar
  21. Hou C, Liu ZX, Tang KL, Wang MG, Sun J, Wang J, Li S (2012) Developmental changes and regional localization of Dspp, Mepe, Mimecan and Versican in postnatal developing mouse teeth. J Mol Histol 43(1):9–16. doi: 10.1007/s10735-011-9368-9 PubMedCrossRefGoogle Scholar
  22. Ivaska J, Vuoriluoto K, Huovinen T, Izawa I, Inagaki M, Parker PJ (2005) PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J 24(22):3834–3845. doi: 10.1038/sj.emboj.7600847 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Jalkanen M, Rapraeger A, Saunders S, Bernfield M (1987) Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J Cell Biol 105(6 Pt 2):3087–3096PubMedCrossRefGoogle Scholar
  24. Kalibovic Govorko D, Becic T, Vukojevic K, Mardesic-Brakus S, Biocina-Lukenda D, Saraga-Babic M (2010) Spatial and temporal distribution of Ki-67 proliferation marker, Bcl-2 and Bax proteins in the developing human tooth. Arch Oral Biol 55(12):1007–1016. doi: 10.1016/j.archoralbio.2010.07.024 PubMedCrossRefGoogle Scholar
  25. Kasper M, Karsten U, Stosiek P, Moll R (1989) Distribution of intermediate-filament proteins in the human enamel organ: unusually complex pattern of coexpression of cytokeratin polypeptides and vimentin. Differentiation 40(3):207–214PubMedCrossRefGoogle Scholar
  26. Kero D, Novakovic J, Vukojevic K, Petricevic J, Kalibovic Govorko D, Biocina-Lukenda D, Saraga-Babic M (2014) Expression of Ki-67, Oct-4, gamma-tubulin and alpha-tubulin in human tooth development. Arch Oral Biol 59(11):1119–1129. doi: 10.1016/j.archoralbio.2014.05.025 PubMedCrossRefGoogle Scholar
  27. Kokenyesi R, Bernfield M (1994) Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J Biol Chem 269(16):12304–12309PubMedGoogle Scholar
  28. Lesot H, Brook AH (2009) Epithelial histogenesis during tooth development. Arch Oral Biol 54(Suppl 1):S25–S33. doi: 10.1016/j.archoralbio.2008.05.019 PubMedCrossRefGoogle Scholar
  29. Lesot H, Meyer JM, Ruch JV, Weber K, Osborn M (1982) Immunofluorescent localization of vimentin, prekeratin and actin during odontoblast and ameloblast differentiation. Differentiation 21(2):133–137PubMedCrossRefGoogle Scholar
  30. Liao J, Price D, Omary MB (1997) Association of glucose-regulated protein (grp78) with human keratin 8. FEBS Lett 417(3):316–320PubMedCrossRefGoogle Scholar
  31. Lindberg K, Rheinwald JG (1990) Three distinct keratinocyte subtypes identified in human oral epithelium by their patterns of keratin expression in culture and in xenografts. Differentiation 45(3):230–241PubMedCrossRefGoogle Scholar
  32. Maas R, Chen YP, Bei M, Woo I, Satokata I (1996) The role of Msx genes in mammalian development. Ann N Y Acad Sci 785:171–181PubMedCrossRefGoogle Scholar
  33. Mali M, Elenius K, Miettinen HM, Jalkanen M (1993) Inhibition of basic fibroblast growth factor-induced growth promotion by overexpression of syndecan-1. J Biol Chem 268(32):24215–24222PubMedGoogle Scholar
  34. Mendez MG, Kojima S, Goldman RD (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24(6):1838–1851. doi: 10.1096/fj.09-151639 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Mitsiadis TA, Salmivirta M, Muramatsu T, Muramatsu H, Rauvala H, Lehtonen E, Jalkanen M, Thesleff I (1995) Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121(1):37–51PubMedGoogle Scholar
  36. Muto T, Miyoshi K, Munesue S, Nakada H, Okayama M, Matsuo T, Noma T (2007) Differential expression of syndecan isoforms during mouse incisor amelogenesis. J Med Invest 54(3–4):331–339PubMedCrossRefGoogle Scholar
  37. Nakai M, Tatemoto Y, Mori H, Mori M (1986) Distribution profiles of keratin proteins during rat amelogenesis. Histochemistry 85(2):89–94PubMedCrossRefGoogle Scholar
  38. Nishikawa S (1992) Correlation of the arrangement pattern of enamel rods and secretory ameloblasts in pig and monkey teeth: a possible role of the terminal webs in ameloblast movement during secretion. Anat Rec 232(4):466–478. doi: 10.1002/ar.1092320403 PubMedCrossRefGoogle Scholar
  39. O’Rahilly R (1972) Guide to the staging of human embryos. Anat Anz 130(5):556–559PubMedGoogle Scholar
  40. Page M (1989) Changing patterns of cytokeratins and vimentin in the early chick embryo. Development 105(1):97–107PubMedGoogle Scholar
  41. Raul U, Sawant S, Dange P, Kalraiya R, Ingle A, Vaidya M (2004) Implications of cytokeratin 8/18 filament formation in stratified epithelial cells: induction of transformed phenotype. Int J Cancer 111(5):662–668. doi: 10.1002/ijc.20349 PubMedCrossRefGoogle Scholar
  42. Ravindranath RM, Tam WY, Bringas P Jr, Santos V, Fincham AG (2001) Amelogenin-cytokeratin 14 interaction in ameloblasts during enamel formation. J Biol Chem 276(39):36586–36597. doi: 10.1074/jbc.M104656200 PubMedCrossRefGoogle Scholar
  43. Salmivirta M, Elenius K, Vainio S, Hofer U, Chiquet-Ehrismann R, Thesleff I, Jalkanen M (1991) Syndecan from embryonic tooth mesenchyme binds tenascin. J Biol Chem 266(12):7733–7739PubMedGoogle Scholar
  44. Sanderson RD, Bernfield M (1988) Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia. Proc Natl Acad Sci USA 85(24):9562–9566PubMedCentralPubMedCrossRefGoogle Scholar
  45. Saunders S, Jalkanen M, O’Farrell S, Bernfield M (1989) Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol 108(4):1547–1556PubMedCrossRefGoogle Scholar
  46. Schirren CG, Burgdorf WH, Sander CA, Plewig G (1997) Fetal and adult hair follicle. An immunohistochemical study of anticytokeratin antibodies in formalin-fixed and paraffin-embedded tissue. Am J Dermatopathol 19(4):335–340PubMedGoogle Scholar
  47. Si SP, Tsou HC, Lee X, Peacocke M (1993) Cultured human melanocytes express the intermediate filament vimentin. J Invest Dermatol 101(3):383–386PubMedCrossRefGoogle Scholar
  48. Su G, Blaine SA, Qiao D, Friedl A (2007) Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem 282(20):14906–14915. doi: 10.1074/jbc.M611739200 PubMedCrossRefGoogle Scholar
  49. Suzuki M, Gemmell R, Yoshida S (1999) Vimentin localisation in tooth germ cells of two marsupial species, the northern brown bandicoot, Isoodon macrourus, and the brushtail possum, Trichosurus vulpecula. Kaibogaku Zasshi 74(2):191–196PubMedGoogle Scholar
  50. Tabata MJ, Matsumura T, Liu JG, Wakisaka S, Kurisu K (1996) Expression of cytokeratin 14 in ameloblast-lineage cells of the developing tooth of rat, both in vivo and in vitro. Arch Oral Biol 41(11):1019–1027PubMedCrossRefGoogle Scholar
  51. Townsend G, Harris EF, Lesot H, Clauss F, Brook A (2009) Morphogenetic fields within the human dentition: a new, clinically relevant synthesis of an old concept. Arch Oral Biol 54(Suppl 1):S34–S44. doi: 10.1016/j.archoralbio.2008.06.011 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Vaidya MM, Sawant SS, Borges AM, Naresh NK, Purandare MC, Bhisey AN (2000) Cytokeratin expression in human fetal tongue and buccal mucosa. J Biosci 25(3):235–242PubMedCrossRefGoogle Scholar
  53. Vainio S, Thesleff I (1992) Coordinated induction of cell proliferation and syndecan expression in dental mesenchyme by epithelium: evidence for diffusible signals. Dev Dyn 194(2):105–117. doi: 10.1002/aja.1001940204 PubMedCrossRefGoogle Scholar
  54. Vainio S, Jalkanen M, Thesleff I (1989) Syndecan and tenascin expression is induced by epithelial-mesenchymal interactions in embryonic tooth mesenchyme. J Cell Biol 108(5):1945–1953PubMedCrossRefGoogle Scholar
  55. Vainio S, Jalkanen M, Vaahtokari A, Sahlberg C, Mali M, Bernfield M, Thesleff I (1991) Expression of syndecan gene is induced early, is transient, and correlates with changes in mesenchymal cell proliferation during tooth organogenesis. Dev Biol 147(2):322–333PubMedCrossRefGoogle Scholar
  56. Viebahn C, Lane EB, Ramaekers FC (1988) Keratin and vimentin expression in early organogenesis of the rabbit embryo. Cell Tissue Res 253(3):553–562PubMedCrossRefGoogle Scholar
  57. Vukojevic K, Kero D, Novakovic J, Kalibovic Govorko D, Saraga-Babic M (2012) Cell proliferation and apoptosis in the fusion of human primary and secondary palates. Eur J Oral Sci 120(4):283–291. doi: 10.1111/j.1600-0722.2012.00967.x PubMedGoogle Scholar
  58. Wang B, Li H, Liu Y, Lin X, Lin Y, Wang Y, Hu X, Zhang Y (2014) Expression patterns of WNT/beta-CATENIN signaling molecules during human tooth development. J Mol Histol. doi: 10.1007/s10735-014-9572-5 Google Scholar
  59. Webb PP, Moxham BJ, Ralphs JR, Benjamin M (1995) Cytoskeleton of the mesenchymal cells of the rat dental papilla and dental pulp. Connect Tissue Res 32(1–4):71–76PubMedCrossRefGoogle Scholar
  60. Williams JR (2008) The declaration of Helsinki and public health. Bull World Health Organ 86(8):650–652PubMedCentralPubMedCrossRefGoogle Scholar
  61. Yu WY, Slack JM, Tosh D (2005) Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol 284(1):157–170. doi: 10.1016/j.ydbio.2005.04.042 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • D. Kero
    • 1
  • D. Kalibovic Govorko
    • 1
  • K. Vukojevic
    • 2
    • 3
  • M. Cubela
    • 2
  • V. Soljic
    • 2
  • M. Saraga-Babic
    • 3
  1. 1.School of Dental MedicineUniversity of SplitSplitCroatia
  2. 2.Department of Histology and Embriology, School of MedicineUniversity of MostarMostarBosnia and Herzegovina
  3. 3.Department of Anatomy, Histology and Embriology, School of MedicineUniversity of SplitSplitCroatia

Personalised recommendations