Journal of Molecular Histology

, Volume 45, Issue 5, pp 487–496 | Cite as

Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development

  • Bingmei Wang
  • Hanliang Li
  • Ying Liu
  • Xin Lin
  • Yao Lin
  • Ye Wang
  • Xuefeng Hu
  • Yanding Zhang
Original Paper


The WNT/β-CATENIN signaling has been demonstrated to play critical roles in mouse tooth development, but little is known about the status of these molecules in human embryonic tooth. In this study, expression patterns of WNT/β-CATENIN signaling components, including WNT ligands (WNT3, WNT5A), receptors (FZD4, FZD6, LRP5), transducers (β-CATENIN), transcription factors (TCF4, LEF1) and antagonists (DKK1, SOSTDC1) were investigated in human tooth germ at the bud, cap and bell stages by in situ hybridization. All these genes exhibited similar but slightly distinct expression patterns in human tooth germ in comparison with mouse. Furthermore the mRNA expression of these genes in incisors and molars at the bell stage was also examined by real-time PCR. Our results reveal the status of active WNT/β-CATENIN signaling in the human tooth germ and suggest these components may also play an essential role in the regulation of human tooth development.


WNT/β-CATENIN signaling Human tooth germ Gene expression Transcriptional factors Growth factors 



We would like to thank the Hospital for Women and Children of Fujian Province for providing aborted human embryonic tissues for this research. This study was supported by Grants from the Natural Science Foundation of China (NSFC) (No. 81200761), Natural Science Foundation of Fujian Province (2011J01146), Doctoral Program of Higher Education of China (20123503120005), Scientific Research Fund of Fujian Provincial Education Department (JA12081), and Excellent Young key Teachers Program of Fujian Normal University (fjsdjk2012077).


  1. Adaimy L, Chouery E, Megarbane H, Mroueh S, Delague V, Nicolas E, Belguith H, de Mazancourt P, Megarbane A (2007) Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. Am J Hum Genet 81(4):821–828PubMedCentralPubMedCrossRefGoogle Scholar
  2. Blanton SH, Bertin T, Serna ME, Stal S, Mulliken JB, Hecht JT (2004) Association of chromosomal regions 3p21.2, 10p13, and 16p13.3 with nonsyndromic cleft lip and palate. Am J Med Genet A 125A(1):23–27PubMedCrossRefGoogle Scholar
  3. Bohring A, Stamm T, Spaich C, Haase C, Spree K, Hehr U, Hoffmann M, Ledig S, Sel S, Wieacker P, Ropke A (2009) WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am J Hum Genet 85(1):97–105PubMedCentralPubMedCrossRefGoogle Scholar
  4. Daa T, Kashima K, Kaku N, Suzuki M, Yokoyama S (2004) Mutations in components of the Wnt signaling pathway in adenoid cystic carcinoma. Mod Pathol 17(12):1475–1482PubMedCrossRefGoogle Scholar
  5. Daa T, Kaku N, Kashima K, Nakayama I, Yokoyama S (2005) Expression of beta-catenin, E-cadherin and cyclin D1 in adenoid cystic carcinoma of the salivary gland. J Exp Clin Cancer Res 24(1):83–87PubMedGoogle Scholar
  6. Du J, Wang Q, Wang L, Wang X, Yang P (2012) The expression pattern of FHL2 during mouse molar development. J Mol Histol 43(3):289–295PubMedCrossRefGoogle Scholar
  7. Feng J, McDaniel JS, Chuang HH, Huang O, Rakian A, Xu X, Steffensen B, Donly KJ, MacDougall M, Chen S (2012) Binding of amelogenin to MMP-9 and their co-expression in developing mouse teeth. J Mol Histol 43(5):473–485PubMedCentralPubMedCrossRefGoogle Scholar
  8. Fjeld K, Kettunen P, Furmanek T, Kvinnsland IH, Luukko K (2005) Dynamic expression of Wnt signaling-related Dickkopf1, -2, and -3 mRNAs in the developing mouse tooth. Dev Dyn 233(1):161–166PubMedCrossRefGoogle Scholar
  9. Foulkes WD (1995) A tale of four syndromes: familial adenomatous polyposis, Gardner syndrome, attenuated APC and Turcot syndrome. QJM 88(12):853–863PubMedGoogle Scholar
  10. Frierson HF Jr, El-Naggar AK, Welsh JB, Sapinoso LM, Su AI, Cheng J, Saku T, Moskaluk CA, Hampton GM (2002) Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma. Am J Pathol 161(4):1315–1323PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gary C, Schoenwolf SBB, Brauer PR, Francis-West PH (2008) Larsen’s Human Embryology, 4th edn. Churchill Livingstone, LondonGoogle Scholar
  12. Hjalt TA, Semina EV, Amendt BA, Murray JC (2000) The Pitx2 protein in mouse development. Dev Dyn 218(1):195–200PubMedCrossRefGoogle Scholar
  13. Hu X, Zhang S, Chen G, Lin C, Huang Z, Chen Y, Zhang Y (2013) Expression of SHH signaling molecules in the developing human primary dentition. BMC Dev Biol 13:11PubMedCentralPubMedCrossRefGoogle Scholar
  14. Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115(Pt 21):3977–3978PubMedCrossRefGoogle Scholar
  15. Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, Krumlauf R (2003) Wise, a context-dependent activator and inhibitor of Wnt signalling. Development 130(18):4295–4305PubMedCrossRefGoogle Scholar
  16. Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I (2006) Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 103(49):18627–18632PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kassai Y, Munne P, Hotta Y, Penttila E, Kavanagh K, Ohbayashi N, Takada S, Thesleff I, Jernvall J, Itoh N (2005) Regulation of mammalian tooth cusp patterning by ectodin. Science 309(5743):2067–2070PubMedCrossRefGoogle Scholar
  18. Kawabata T, Takahashi K, Sugai M, Murashima-Suginami A, Ando S, Shimizu A, Kosugi S, Sato T, Nishida M, Murakami K, Iizuka T (2005) Polymorphisms in PTCH1 affect the risk of ameloblastoma. J Dent Res 84(9):812–816PubMedCrossRefGoogle Scholar
  19. Kettunen P, Loes S, Furmanek T, Fjeld K, Kvinnsland IH, Behar O, Yagi T, Fujisawa H, Vainio S, Taniguchi M, Luukko K (2005) Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development 132(2):323–334PubMedCrossRefGoogle Scholar
  20. Laurikkala J, Kassai Y, Pakkasjarvi L, Thesleff I, Itoh N (2003) Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol 264(1):91–105PubMedCrossRefGoogle Scholar
  21. Lei H, Liu H, Ding Y, Ge L (2014) Immunohistochemical localization of Pax6 in the developing tooth germ of mice. J Mol Histol. doi: 10.1007/s10735-014-9564-5
  22. Lin D, Huang Y, He F, Gu S, Zhang G, Chen Y, Zhang Y (2007) Expression survey of genes critical for tooth development in the human embryonic tooth germ. Dev Dyn 236(5):1307–1312PubMedCrossRefGoogle Scholar
  23. Lin M, Li L, Liu C, Liu H, He F, Yan F, Zhang Y, Chen Y (2011) Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn 240(2):432–440PubMedCentralPubMedCrossRefGoogle Scholar
  24. Liu F, Millar SE (2010) Wnt/beta-catenin signaling in oral tissue development and disease. J Dent Res 89(4):318–330PubMedCentralPubMedCrossRefGoogle Scholar
  25. Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, Taketo MM, Morrisey EE, Atit R, Dlugosz AA, Millar SE (2008) Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 313(1):210–224PubMedCentralPubMedCrossRefGoogle Scholar
  26. Mikels AJ, Nusse R (2006a) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4(4):e115PubMedCentralPubMedCrossRefGoogle Scholar
  27. Mikels AJ, Nusse R (2006b) Wnts as ligands: processing, secretion and reception. Oncogene 25(57):7461–7468PubMedCrossRefGoogle Scholar
  28. Millar SE, Koyama E, Reddy ST, Andl T, Gaddapara T, Piddington R, Gibson CW (2003) Over- and ectopic expression of Wnt3 causes progressive loss of ameloblasts in postnatal mouse incisor teeth. Connect Tissue Res 44(Suppl 1):124–129PubMedCrossRefGoogle Scholar
  29. Mustonen T, Pispa J, Mikkola ML, Pummila M, Kangas AT, Pakkasjarvi L, Jaatinen R, Thesleff I (2003) Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol 259(1):123–136PubMedCrossRefGoogle Scholar
  30. Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, Weber JL, Muller U (2004) Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet 74(3):558–563PubMedCentralPubMedCrossRefGoogle Scholar
  31. Peng L, Dong G, Xu P, Ren LB, Wang CL, Aragon M, Zhou XD, Ye L (2010a) Expression of Wnt5a in tooth germs and the related signal transduction analysis. Arch Oral Biol 55(2):108–114PubMedCrossRefGoogle Scholar
  32. Peng L, Ren LB, Dong G, Wang CL, Xu P, Ye L, Zhou XD (2010b) Wnt5a promotes differentiation of human dental papilla cells. Int Endod J 43(5):404–412PubMedCrossRefGoogle Scholar
  33. Pispa J, Mustonen T, Mikkola ML, Kangas AT, Koppinen P, Lukinmaa PL, Jernvall J, Thesleff I (2004) Tooth patterning and enamel formation can be manipulated by misexpression of TNF receptor Edar. Dev Dyn 231(2):432–440PubMedCrossRefGoogle Scholar
  34. Rickels MR, Zhang X, Mumm S, Whyte MP (2005) Oropharyngeal skeletal disease accompanying high bone mass and novel LRP5 mutation. J Bone Miner Res 20(5):878–885PubMedCrossRefGoogle Scholar
  35. Roessler E, Du Y, Glinka A, Dutra A, Niehrs C, Muenke M (2000) The genomic structure, chromosome location, and analysis of the human DKK1 head inducer gene as a candidate for holoprosencephaly. Cytogenet Cell Genet 89(3–4):220–224PubMedCrossRefGoogle Scholar
  36. Sarkar L, Sharpe PT (1999) Expression of Wnt signalling pathway genes during tooth development. Mech Dev 85(1–2):197–200PubMedCrossRefGoogle Scholar
  37. Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, Sakamoto M, Hirohashi S (2002) Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 161(6):1997–2001PubMedCentralPubMedCrossRefGoogle Scholar
  38. Sekine S, Sato S, Takata T, Fukuda Y, Ishida T, Kishino M, Shibata T, Kanai Y, Hirohashi S (2003) Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol 163(5):1707–1712PubMedCentralPubMedCrossRefGoogle Scholar
  39. Siriwardena BS, Kudo Y, Ogawa I, Tilakaratne WM, Takata T (2009) Aberrant beta-catenin expression and adenomatous polyposis coli gene mutation in ameloblastoma and odontogenic carcinoma. Oral Oncol 45(2):103–108PubMedCrossRefGoogle Scholar
  40. Tang R, Wang Q, Du J, Yang P, Wang X (2013) Expression and localization of Nell-1 during murine molar development. J Mol Histol 44(2):175–181PubMedCrossRefGoogle Scholar
  41. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8(22):2691–2703PubMedCrossRefGoogle Scholar
  42. Wang C, Zhao Y, Su Y, Li R, Lin Y, Zhou X, Ye L (2013) C-Jun N-terminal kinase (JNK) mediates Wnt5a-induced cell motility dependent or independent of RhoA pathway in human dental papilla cells. PLoS One 8(7):e69440PubMedCentralPubMedCrossRefGoogle Scholar
  43. Yang J, Wan C, Nie S, Jian S, Sun Z, Zhang L, Chen Z (2013) Localization of Beclin1 in mouse developing tooth germs: possible implication of the interrelation between autophagy and apoptosis. J Mol Histol 44(6):619–627PubMedCrossRefGoogle Scholar
  44. Zhang M, Shi J, Huang Y, Lai L (2012) Expression of canonical WNT/beta-CATENIN signaling components in the developing human lung. BMC Dev Biol 12:21PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Bingmei Wang
    • 1
  • Hanliang Li
    • 1
  • Ying Liu
    • 1
  • Xin Lin
    • 1
  • Yao Lin
    • 1
  • Ye Wang
    • 1
  • Xuefeng Hu
    • 1
  • Yanding Zhang
    • 1
  1. 1.Fujian Key Laboratory of Developmental and Neuro Biology, College of Life SciencesFujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations