Skip to main content

Advertisement

Log in

Hesperetin protects against cardiac remodelling induced by pressure overload in mice

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Cardiac remodelling is a major determinant of heart failure (HF) and is characterised by cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. Hesperetin, which belongs to the flavonoid subgroup of citrus flavonoids, is the main flavonoid in oranges and possesses multiple pharmacological properties. However, its role in cardiac remodelling remains unknown. We determined the effect of hesperetin on cardiac hypertrophy, fibrosis and heart function using an aortic banding (AB) mouse. Male, 8–10-week-old, wild-type C57 mice with or without oral hesperetin administration were subjected to AB or a sham operation. Our data demonstrated that hesperetin protected against cardiac hypertrophy, fibrosis and dysfunction induced by AB, as assessed by heart weigh/body weight, lung weight/body weight, heart weight/tibia length, echocardiographic and haemodynamic parameters, histological analysis, and gene expression of hypertrophic and fibrotic markers. Also, hesperetin attenuated oxidative stress and myocytes apoptosis induced by AB. The inhibitory effect of hesperetin on cardiac remodelling was mediated by blocking PKCα/βII-AKT, JNK and TGFβ1-Smad signalling pathways. In conclusion, we found that the orange flavonoid hesperetin protected against cardiac remodelling induced by pressure overload via inhibiting cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. These findings suggest a potential therapeutic drug for cardiac remodelling and HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antos CL, McKinsey TA, Frey N et al (2002) Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 99:907–912

    Article  PubMed  CAS  Google Scholar 

  • Barry SP, Townsend PA (2010) What causes a broken heart–molecular insights into heart failure. Int Rev Cell Mol Biol 284:113–179

    Article  PubMed  CAS  Google Scholar 

  • Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575

    Article  PubMed  CAS  Google Scholar 

  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227

    Article  PubMed  CAS  Google Scholar 

  • Bisping E, Ikeda S, Kong SW et al (2006) Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proc Natl Acad Sci USA 103:14471–14476

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne JR, Mongue-Din H, Eaton P, Shah AM (2012) Redox signaling in cardiac physiology and pathology. Circ Res 111:1091–1106

    Article  PubMed  CAS  Google Scholar 

  • Chaanine AH, Jeong D, Liang L et al (2012) JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis 3:265

    Article  PubMed  CAS  Google Scholar 

  • DeBosch B, Sambandam N, Weinheimer C, Courtois M, Muslin AJ (2006) Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem 281:32841–32851

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Zong J, Bian Z et al (2013) Indole-3-carbinol protects against pressure overload induced cardiac remodeling via activating AMPK-alpha. Mol Nutr Food Res. doi:10.1002/mnfr.201300012

    Google Scholar 

  • Fan GC, Yuan Q, Song G et al (2006) Small heat-shock protein Hsp20 attenuates beta-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1. Circ Res 99:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Turdi S, Ford SP et al (2011) Influence of gestational overfeeding on cardiac morphometry and hypertrophic protein markers in fetal sheep. J Nutr Biochem 22:30–37

    Article  PubMed  CAS  Google Scholar 

  • Houser SR, Margulies KB, Murphy AM et al (2012) Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111:131–150

    Article  PubMed  CAS  Google Scholar 

  • Keranen LM, Dutil EM, Newton AC (1995) Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol 5:1394–1403

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Jung KJ, Choi JS, Chung HY (2006a) Modulation of the age-related nuclear factor-kappaB (NF-kappaB) pathway by hesperetin. Aging Cell 5:401–411

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Jung KJ, Choi JS, Chung HY (2006b) Modulation of the age-related nuclear factor-kappaB (NF-kappaB) pathway by hesperetin. Aging Cell 5:401–411

    Article  PubMed  CAS  Google Scholar 

  • Li HL, Wang AB, Huang Y et al (2005) Isorhapontigenin, a new resveratrol analog, attenuates cardiac hypertrophy via blocking signaling transduction pathways. Free Radic Biol Med 38:243–257

    Article  PubMed  Google Scholar 

  • Li P, Wang D, Lucas J et al (2008) Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 102:185–192

    Article  PubMed  CAS  Google Scholar 

  • Liang Q, Molkentin JD (2003) Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 35:1385–1394

    Article  PubMed  CAS  Google Scholar 

  • McMullen JR, Sherwood MC, Tarnavski O et al (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109:3050–3055

    Article  PubMed  CAS  Google Scholar 

  • Morin B, Nichols LA, Zalasky KM, Davis JW, Manthey JA, Holland LJ (2008) The citrus flavonoids hesperetin and nobiletin differentially regulate low density lipoprotein receptor gene transcription in HepG2 liver cells. J Nutr 138:1274–1281

    PubMed  CAS  Google Scholar 

  • Ni YG, Berenji K, Wang N et al (2006) Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 114:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Octavia Y, Brunner-La RHP, Moens AL (2012) NADPH oxidase-dependent oxidative stress in the failing heart: from pathogenic roles to therapeutic approach. Free Radic Biol Med 52:291–297

    Article  PubMed  CAS  Google Scholar 

  • Palfi A, Toth A, Hanto K et al (2006) PARP inhibition prevents postinfarction myocardial remodeling and heart failure via the protein kinase C/glycogen synthase kinase-3beta pathway. J Mol Cell Cardiol 41:149–159

    Article  PubMed  CAS  Google Scholar 

  • Pari L, Shagirtha K (2012) Hesperetin protects against oxidative stress related hepatic dysfunction by cadmium in rats. Exp Toxicol Pathol 64:513–520

    Article  PubMed  CAS  Google Scholar 

  • Sabri A, Steinberg SF (2003) Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem 251:97–101

    Article  PubMed  CAS  Google Scholar 

  • Scholz EP, Zitron E, Kiesecker C et al (2007) Orange flavonoid hesperetin modulates cardiac hERG potassium channel via binding to amino acid F656. Nutr Metab Cardiovasc Dis 17:666–675

    Article  PubMed  CAS  Google Scholar 

  • Shah AM, Mann DL (2011) In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378:704–712

    Article  PubMed  CAS  Google Scholar 

  • Shih CH, Lin LH, Hsu HT et al (2012) Hesperetin, a selective phosphodiesterase 4 inhibitor, effectively suppresses ovalbumin-induced airway hyperresponsiveness without influencing xylazine/ketamine-induced anesthesia. Evid Based Complement Alternat Med 2012:472897

    PubMed  Google Scholar 

  • Singh SS, Kang PM (2011) Mechanisms and inhibitors of apoptosis in cardiovascular diseases. Curr Pharm Des 17:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Skurk C, Izumiya Y, Maatz H et al (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280:20814–20823

    Article  PubMed  CAS  Google Scholar 

  • Soesanto W, Lin HY, Hu E et al (2009) Mammalian target of rapamycin is a critical regulator of cardiac hypertrophy in spontaneously hypertensive rats. Hypertension 54:1321–1327

    Article  PubMed  CAS  Google Scholar 

  • Trivedi PP, Kushwaha S, Tripathi DN, Jena GB (2011) Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat. Cardiovasc Toxicol 11:215–225

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Guan P, Zhang JP et al (2011) Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses isoproterenol-induced heart failure in rats via JNK and ERK1/2 pathways. J Cell Biochem 112:1920–1929

    Article  PubMed  CAS  Google Scholar 

  • Wong WW, Puthalakath H (2008) Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life 60:390–397

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Huang H, Tang QZ et al (2010) Breviscapine protects against cardiac hypertrophy through blocking PKC-alpha-dependent signaling. J Cell Biochem 109:1158–1171

    PubMed  CAS  Google Scholar 

  • Yang HL, Chen SC, Senthil KKJ et al (2012) Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem 60:522–532

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Chan FL, Chen S, Leung LK (2012) The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. J Nutr Biochem 23:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Takamura N, Shuto T et al (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem Biophys Res Commun 394:728–732

    Article  PubMed  CAS  Google Scholar 

  • Zong J, Deng W, Zhou H et al (2013) 3,3′-Diindolylmethane Protects against Cardiac Hypertrophy via 5′-Adenosine Monophosphate-Activated Protein Kinase-alpha2. PLoS One 8:e53427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China [81270303]; and the Fundamental Research Funds for the Central Universities of China [20103020201000193].

Conflict of interest

The authors have no any potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhu Tang.

Additional information

Wei Deng and Duan Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Jiang, D., Fang, Y. et al. Hesperetin protects against cardiac remodelling induced by pressure overload in mice. J Mol Hist 44, 575–585 (2013). https://doi.org/10.1007/s10735-013-9514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-013-9514-7

Keywords

Navigation