Skip to main content
Log in

Colloidal carbon stimulation of Kupffer cells triggers Nrf2 activation in the isolated perfused rat liver

  • Brief Communication
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Activation of transcription factor Nrf2 was investigated in the isolated perfused rat liver infused with 0.5 mg of colloidal carbon (CC)/ml for 5–15 min to stimulated Kupffer cell function. Infusion of CC enhanced liver O2 consumption over basal levels, with a time-dependent increase in CC-induced O2 uptake, at constant rates of CC phagocytosis by Kupffer cells, as assessed histologically, and adequate viability conditions of the livers, as shown by the marginal (0.34 %) total sinusoidal lactate dehydrogenase (LDH) efflux over intrahepatic LDH activity. Under these conditions, cytosolic protein levels of Nrf2 (Western blot) and inhibitor of Nrf2 Keap1 progressively declined by CC infusion, those of nuclear Nrf2 increased, leading to enhancement in the nuclear/cytosolic Nrf2 ratios. It is concluded that the respiratory burst of CC-stimulated Kupffer cells triggers Nrf2 activation in the perfused liver, a response that may afford cellular protection under pro-oxidant conditions underlying Kupffer cell stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bergmeyer HU, Bernt E (1974) Lactate dehydrogenase. In: Bergmeyer HU (ed) Methods for enzymatic analysis, vol 2. Academic Press, New York, pp 574–579

    Google Scholar 

  • Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver injury. Liver Int 26:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Kim DW, Choi JS, Islam MN, Kim YS, Lee SM (2011) Protective effects of hyperoside against carbon tetrachloride-induced liver damage in mice. J Nat Products 74:1055–1060

    Article  CAS  Google Scholar 

  • Cowper KB, Currin RT, Dawson TL, Linsert KA, Lemasters JJ, Thurman RG (1990) A new method to monitor Kupffer-cell function continuously in the perfused rat liver. Biochem J 266:141–147

    PubMed  CAS  Google Scholar 

  • Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 18:245–261

    Article  Google Scholar 

  • Forman HJ, Torres M (2001) Signaling by the respiratory burst in macrophages. IUBMB Life 51:365–371

    Article  PubMed  CAS  Google Scholar 

  • Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  PubMed  CAS  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  PubMed  CAS  Google Scholar 

  • Iles KE, Dickinson DA, Watanabe N, Iwamoto T, Forman HJ (2002) AP-1 activation through endogenous H2O2 generation by alveolar macrophages. Free Radic Biol Med 32:1304–1313

    Article  PubMed  CAS  Google Scholar 

  • Kang JL, Go YH, Hur KC, Castranova V (2000) Silica-induced nuclear factor-kappa B activation: involvement of reactive oxygen species and protein tyrosine kinase activation. J Toxicol Environ Health 60:27–46

    Article  CAS  Google Scholar 

  • Kaul N, Forman HJ (1996) Activation of NF-κB by the respiratory burst of macrophages. Free Radic Biol Med 21:401–405

    Article  PubMed  CAS  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Ann Rev Pharmacol Toxicol 47:89–116

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leonarduzzi G, Sttero B, Poli G (2010) Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited. Pharmacol Ther 128:336–374

    Article  PubMed  CAS  Google Scholar 

  • Maher JM, Aleksunes LM, Dieter MZ, Tanaka Y, Peters JM, Manautou JE, Klaassen CD (2008) Nrf2- and PPAR-α-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol Sci 106:319–328

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Murr MM (2011) Roux-en-Y gastric bypass improves hepatic mitochondrial function in obese rats. Surg Obes Related Dis 2011, in press

  • Romanque P, Tapia G, Videla LA (2003) Kupffer cell stimulation in the isolated perfused rat liver triggers nuclear factor-κB DNA binding activity. Redox Rep 8:341–346

    Article  PubMed  CAS  Google Scholar 

  • Rusyn I, Rose ML, Borjes HK, Thurman RG (2000) Novel role of oxidants in the molecular mechanism of action of peroxisome proliferators. Antiox Redox Signal 2:607–621

    Article  CAS  Google Scholar 

  • Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage to mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317–5323

    PubMed  CAS  Google Scholar 

  • Singh S, Vrisni S, Singh BK, Rahman I, Kakkar OP (2010) Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res 44:1267–1288

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Maher JM, Chen C, Klaassen CD (2007) Hepatic ischemia-reperfusion induces renal heme oxygenase via NF-E2-related factor 2 in rats and mice. Mol Pharmacol 71:817–825

    Article  PubMed  CAS  Google Scholar 

  • Tapia G, Pepper I, Smok G, Videla LA (1997) Kupffer cell function in thyroid hormone-induced liver oxidative stress in the rat. Free Radic Res 26:267–279

    Article  PubMed  CAS  Google Scholar 

  • Tapia G, Santibáñez C, Farías J, Fuenzalida G, Varela P, Videla LA, Fernández V (2010) Kupffer-cell activity is essential for thyroid hormone rat liver preconditioning. Mol Cell Endocrinol 323:292–297

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto H (2002) Redox regulation of cytokine expression in Kupffer cells. Antiox Redox Signal 4:741–748

    Article  CAS  Google Scholar 

  • Tsukamoto H, Lin M (1997) The role of Kupffer cells in liver cell injury. In: Wisse E, Knook DL, Balabaud C (eds) Cells of the hepatic sinusoid, vol 6. The Kupffer Cell Foundation, Leiden, pp 244–250

    Google Scholar 

  • Videla LA (2010) Cytoprotective and suicidal signaling in oxidative stress. Biol Res 43:363–369

    Article  PubMed  CAS  Google Scholar 

  • Vrba J, Mondriansky M (2002) Oxidative burst of Kupffer cells: Target for liver injury treatment. Biomed Papers 146:15–20

    CAS  Google Scholar 

  • Yeligar SM, Machida K, Kaira VK (2010) Ethanol-induced HO-1 and NQO1 are differentially regulated by HIF-1α and Nrf2 to attenuate inflammatory cytokine expression. J Biol Chem 285:35359–35373

    Article  PubMed  CAS  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 1090020 from FONDECYT (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Videla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez, B., Vargas, R., Castillo, I. et al. Colloidal carbon stimulation of Kupffer cells triggers Nrf2 activation in the isolated perfused rat liver. J Mol Hist 43, 343–349 (2012). https://doi.org/10.1007/s10735-012-9403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9403-5

Keywords

Navigation