Journal of Molecular Histology

, Volume 40, Issue 4, pp 241–250 | Cite as

The importance of molecular histology to study glial influence on neurodegenerative disorders. Focus on recent developed single cell laser microdissection

  • Gerson Chadi
  • Jessica Ruivo Maximino
  • Gabriela Pintar de Oliveira
Review Paper


Neuron-glia interaction is involved in physiological function of neurons, however recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Histological techniques employing immunolabeling, historadiography and in situ hybridization have been useful to localize at cell levels molecules in normal and pathological situations. The intercellular accomplishment leading to neuronal injury in central nervous system disorders implies the performance of quantitative assays to better interpret the role of related molecules or signal pathways, however one limitation employing the whole tissue is the loss of cellular resolution. The laser capture microdissection was developed recently and allows the selection of specific cell types from their original environment after freezing and sectioning the tissue sampling, leading to the quantification of gene expression in individual cells, thus providing a unique opportunity to get new informations on cell signaling related to neurodegeneration. Here we reviewed the role of glial cell signaling on neurodegenerative disorders like ischemia, Parkinson and Alzheimer diseases, and also amyotrophic lateral sclerosis and what has been published with regards to single cell laser capture microdissection technique in the molecular biology investigation on these issues.


Cell microdissection Neuroglia ALS Parkinson Ischemia Method 



This work was supported by individual grants from FAPESP (95/9060-6; 98/13122-5; 99/01319-1; 07/00491-3) and CNPq, Brazil. We also thank Mr. Fernando Carlos de Oliveira for language revision.


  1. Alldred MJ, Che S, Ginsberg SD (2009) Terminal continuation (TC) RNA amplification without second strand synthesis. J Neurosci Methods 177:381–385CrossRefPubMedGoogle Scholar
  2. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. Febs J 276:13–26CrossRefPubMedGoogle Scholar
  3. Aoki M, Volkmann I, Tjernberg LO, Winblad B, Bogdanovic N (2008) Amyloid beta-peptide levels in laser capture microdissected cornu ammonis 1 pyramidal neurons of Alzheimer’s brain. Neuroreport 19:1085–1089PubMedCrossRefGoogle Scholar
  4. Baumann E, Preston E, Slinn J, Stanimirovic D (2009) Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia. Brain Res 1269:185–197CrossRefPubMedGoogle Scholar
  5. Benton RL, Whittemore SR (2003) VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res 28:1693–1703CrossRefPubMedGoogle Scholar
  6. Bilsland LG, Nirmalananthan N, Yip J, Greensmith L, Duchen MR (2008) Expression of mutant SOD1 in astrocytes induces functional deficits in motoneuron mitochondria. J Neurochem 107:1271–1283CrossRefPubMedGoogle Scholar
  7. Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B, Asteris G, Clark TW, Frosch MP, Standaert DG (2007) Effects of gender on nigral gene expression and Parkinson disease. Neurobiol Dis 26:606–614CrossRefPubMedGoogle Scholar
  8. Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, Robinson KM, Mason RP, Beckman JS, Barbeito L, Radi R (2008) Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 28:4115–4122CrossRefPubMedGoogle Scholar
  9. Chadi G, Fuxe K (1998) Analysis of trophic responses in lesioned brain: focus on basic fibroblast growth factor mechanisms. Braz J Med Biol Res 31:231–241CrossRefPubMedGoogle Scholar
  10. Chadi G, Gomide VC (2004) FGF-2 and S100beta immunoreactivities increase in reactive astrocytes, but not in microglia, in ascending dopamine pathways following a striatal 6-OHDA-induced partial lesion of the nigrostriatal system. Cell Biol Int 28:849–861CrossRefPubMedGoogle Scholar
  11. Chadi G, Moller A, Rosen L, Janson AM, Agnati LA, Goldstein M, Ogren SO, Pettersson RF, Fuxe K (1993) Protective actions of human recombinant basic fibroblast growth factor on MPTP-lesioned nigrostriatal dopamine neurons after intraventricular infusion. Exp Brain Res 97:145–158CrossRefPubMedGoogle Scholar
  12. Chadi G, Cao Y, Pettersson RF, Fuxe K (1994) Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61:891–910CrossRefPubMedGoogle Scholar
  13. Chadi G, Silva C, Maximino JR, Fuxe K, da Silva GO (2008) Adrenalectomy counteracts the local modulation of astroglial fibroblast growth factor system without interfering with the pattern of 6-OHDA-induced dopamine degeneration in regions of the ventral midbrain. Brain Res 1190:23–38CrossRefPubMedGoogle Scholar
  14. Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, Kan YW, Johnson JA (2009) Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci U S A 106:2933–2938CrossRefPubMedGoogle Scholar
  15. Cheroni C, Marino M, Tortarolo M, Veglianese P, De Biasi S, Fontana E, Zuccarello LV, Maynard CJ, Dantuma NP, Bendotti C (2009) Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. Hum Mol Genet 18:82–96CrossRefPubMedGoogle Scholar
  16. Chesselet MF, Fleming S, Mortazavi F, Meurers B (2008) Strengths and limitations of genetic mouse models of Parkinson’s disease. Parkinsonism Relat Disord 14(Suppl 2):S84–S87CrossRefPubMedGoogle Scholar
  17. Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14:1709–1725CrossRefPubMedGoogle Scholar
  18. Chung CY, Koprich JB, Endo S, Isacson O (2007) An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson’s disease. J Neurosci 27:8314–8323CrossRefPubMedGoogle Scholar
  19. Cuadrado E, Rosell A, Alvarez-Sabin J, Montaner J (2007) Laser capture microdissection: a new tool for the study of cerebral ischemia. Rev Neurol 44:551–555PubMedGoogle Scholar
  20. de Oliveira GP, Duobles T, Catelucci P and Chadi G (2009a) Differential regulation of FGF-2 in neurons and reactive astrocytes of axotomized rat hypoglossal nucleus. A possible therapeutic target for neuroprotection in peripheral nerve pathology. Acta Histochem. doi: 10.1016/j.acthis.2009.06.008
  21. de Oliveira GP, Maximino JR, Lin CJ, Chadi G (2009b) A method to immunolabel rodent spinal cord neurons and glia for molecular study in specific laser microdissected cells involved in neurodegenerative disorders. J Mol Histol. doi: 10.1007/s10735-009-9233-2
  22. DeLeon M, Covenas R, Chadi G, Narvaez JA, Fuxe K, Cintra A (1994) Subpopulations of primary sensory neurons show coexistence of neuropeptides and glucocorticoid receptors in the rat spinal and trigeminal ganglia. Brain Res 636:338–342CrossRefPubMedGoogle Scholar
  23. Demjen D, Klussmann S, Kleber S, Zuliani C, Stieltjes B, Metzger C, Hirt UA, Walczak H, Falk W, Essig M, Edler L, Krammer PH, Martin-Villalba A (2004) Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med 10:389–395CrossRefPubMedGoogle Scholar
  24. do Carmo Cunha J, de Freitas Azevedo Levy B, de Luca BA, de Andrade MS, Gomide VC, Chadi G (2007) Responses of reactive astrocytes containing S100beta protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration. Wound Repair Regen 15:134–146CrossRefPubMedGoogle Scholar
  25. Dobrenis K (1998) Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 16:320–344CrossRefPubMedGoogle Scholar
  26. Ekegren T, Hanrieder J, Aquilonius SM, Bergquist J (2006) Focused proteomics in post-mortem human spinal cord. J Proteome Res 5:2364–2371CrossRefPubMedGoogle Scholar
  27. Fernandez-Medarde A, Porteros A, de las Rivas J, Nunez A, Fuster JJ, Santos E (2007) Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning. Neuroscience 146:272–285CrossRefPubMedGoogle Scholar
  28. Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci 27:9201–9219CrossRefPubMedGoogle Scholar
  29. Forsman CA, Elfvin LG (1987) The ultrastructure of membranes in sympathetic ganglia. Scanning Microsc 1:191–205PubMedGoogle Scholar
  30. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224CrossRefPubMedGoogle Scholar
  31. Gomide VC, Chadi G (1999) The trophic factors S-100beta and basic fibroblast growth factor are increased in the forebrain reactive astrocytes of adult callosotomized rat. Brain Res 835:162–174CrossRefPubMedGoogle Scholar
  32. Grundemann J, Schlaudraff F, Haeckel O, Liss B (2008) Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease. Nucleic Acids Res 36:e38CrossRefPubMedGoogle Scholar
  33. Guiot Y, Rahier J (1995) The effects of varying key steps in the non-radioactive in situ hybridization protocol: a quantitative study. Histochem J 27:60–68Google Scholar
  34. Haqqani AS, Nesic M, Preston E, Baumann E, Kelly J, Stanimirovic D (2005) Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. Faseb J 19:1809–1821CrossRefPubMedGoogle Scholar
  35. Hatton GI (2004) Dynamic neuronal-glial interactions: an overview 20 years later. Peptides 25:403–411CrossRefPubMedGoogle Scholar
  36. Hicks RR, Numan S, Dhillon HS, Prasad MR, Seroogy KB (1997) Alterations in BDNF and NT-3 mRNAs in rat hippocampus after experimental brain trauma. Mol Brain Res 48:401–406Google Scholar
  37. Howlett DR, Bowler K, Soden PE, Riddell D, Davis JB, Richardson JC, Burbidge SA, Gonzalez MI, Irving EA, Lawman A, Miglio G, Dawson EL, Howlett ER, Hussain I (2008) Abeta deposition and related pathology in an APP × PS1 transgenic mouse model of Alzheimer’s disease. Histol Histopathol 23:67–76PubMedGoogle Scholar
  38. Humpel C, Chadi G, Lippoldt A, Ganten D, Fuxe K, Olson L (1994) Increase of basic fibroblast growth factor (bFGF, FGF-2) messenger RNA and protein following implantation of a microdialysis probe into rat hippocampus. Exp Brain Res 98:229–237CrossRefPubMedGoogle Scholar
  39. Hutchinson RW, Cox AG, McLeod CW, Marshall PS, Harper A, Dawson EL, Howlett DR (2005) Imaging and spatial distribution of beta-amyloid peptide and metal ions in Alzheimer’s plaques by laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem 346:225–233CrossRefPubMedGoogle Scholar
  40. Iwata S, Nomoto M, Miyata A (2007) Microarray analysis of laser capture microdissected substantia nigra pars compacta after a single administration of MPTP in common marmosets. Nihon Shinkei Seishin Yakurigaku Zasshi 27:161–166PubMedGoogle Scholar
  41. Jiang YM, Yamamoto M, Kobayashi Y, Yoshihara T, Liang Y, Terao S, Takeuchi H, Ishigaki S, Katsuno M, Adachi H, Niwa J, Tanaka F, Doyu M, Yoshida M, Hashizume Y, Sobue G (2005) Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol 57:236–251CrossRefPubMedGoogle Scholar
  42. Jin L, Lloyd RV (1997) In situ hybridization: methods and applications. J Clin Lab Anal 11:2–9Google Scholar
  43. Leverenz JB, Umar I, Wang Q, Montine TJ, McMillan PJ, Tsuang DW, Jin J, Pan C, Shin J, Zhu D, Zhang J (2007) Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol 17:139–145CrossRefPubMedGoogle Scholar
  44. Levy Bde F, Cunha Jdo C, Chadi G (2007) Cellular analysis of S100Beta and fibroblast growth factor-2 in the dorsal root ganglia and sciatic nerve of rodents. Focus on paracrine actions of activated satellite cells after axotomy. Int J Neurosci 117:1481–1503CrossRefPubMedGoogle Scholar
  45. Liang X, Wang Q, Shi J, Lokteva L, Breyer RM, Montine TJ, Andreasson K (2008) The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann Neurol 64(3):304–314CrossRefPubMedGoogle Scholar
  46. Liao L, Cheng D, Wang J, Duong DM, Losik TG, Gearing M, Rees HD, Lah JJ, Levey AI, Peng J (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem 279:37061–37068CrossRefPubMedGoogle Scholar
  47. Livett BG (1973) Histochemical visualization of peripheral and central adrenergic neurones. Br Med Bull 29:93–99PubMedGoogle Scholar
  48. Lobsiger CS, Boillee S, Cleveland DW (2007) Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proc Natl Acad Sci U S A 104:7319–7326CrossRefPubMedGoogle Scholar
  49. Lu L, Neff F, Alvarez-Fischer D, Henze C, Xie Y, Oertel WH, Schlegel J, Hartmann A (2005) Gene expression profiling of Lewy body-bearing neurons in Parkinson’s disease. Exp Neurol 195:27–39CrossRefPubMedGoogle Scholar
  50. Lu L, Neff F, Fischer DA, Henze C, Hirsch EC, Oertel WH, Schlegel J, Hartmann A (2006) Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson’s disease: a post-mortem study in human control subjects. Neurobiol Dis 23:409–421CrossRefPubMedGoogle Scholar
  51. Malipiero UV, Frei K, Fontana A (1990) Production of hemopoietic colony-stimulating factors by astrocytes. J Immunol 144:3816–3821PubMedGoogle Scholar
  52. Mallajosyula JK, Kaur D, Chinta SJ, Rajagopalan S, Rane A, Nicholls DG, Di Monte DA, Macarthur H, Andersen JK (2008) MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS ONE 3:e1616CrossRefPubMedGoogle Scholar
  53. Mautes AE, Weinzierl MR, Donovan F, Noble LJ (2000) Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 80:673–687PubMedGoogle Scholar
  54. Mawrin C, Kirches E, Dietzmann K (2003) Single-cell analysis of mtDNA in amyotrophic lateral sclerosis: towards the characterization of individual neurons in neurodegenerative disorders. Pathol Res Pract 199:415–418CrossRefPubMedGoogle Scholar
  55. Mawrin C, Kirches E, Krause G, Wiedemann FR, Vorwerk CK, Bogerts B, Schildhaus HU, Dietzmann K, Schneider-Stock R (2004) Single-cell analysis of mtDNA deletion levels in sporadic amyotrophic lateral sclerosis. Neuroreport 15:939–943CrossRefPubMedGoogle Scholar
  56. McMillian MK, Thai L, Hong JS, O’Callaghan JP, Pennypacker KR (1994) Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 17:138–142CrossRefPubMedGoogle Scholar
  57. Myung NH, Zhu X, Kruman II, Castellani RJ, Petersen RB, Siedlak SL, Perry G, Smith MA, Lee HG (2008) Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age (Dordr) 30:209–215CrossRefGoogle Scholar
  58. Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl 72:113–120CrossRefPubMedGoogle Scholar
  59. Noble LJ, Donovan F, Igarashi T, Gousse S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 22:7526–7535PubMedGoogle Scholar
  60. Ohmi K, Kudo LC, Ryazantsev S, Zhao HZ, Karsten SL, Neufeld EF (2009) Sanfilippo syndrome type B, a lysosomal storage disease, is also a tauopathy. Proc Natl Acad Sci U S A 106:8332–8337CrossRefPubMedGoogle Scholar
  61. Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy A, Fox N, Rossor M, Brooks DJ (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72:56–62CrossRefPubMedGoogle Scholar
  62. Pham K, Gupta R (2009) Understanding the mechanisms of entrapment neuropathies. Review article. Neurosurg Focus 26:E7CrossRefPubMedGoogle Scholar
  63. Rho O, Miller GW (2003) Laser capture microdissection to examine transporter expression in specific cell regions. Methods Mol Biol 227:85–96PubMedGoogle Scholar
  64. Rodrigues RW, Gomide VC, Chadi G (2004) Astroglial and microglial activation in the wistar rat ventral tegmental area after a single striatal injection of 6-hydroxydopamine. Int J Neurosci 114:197–216CrossRefPubMedGoogle Scholar
  65. Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J (2008) MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39:1121–1126CrossRefPubMedGoogle Scholar
  66. Ryu JK, Cho T, Choi HB, Wang YT, McLarnon JG (2009) Microglial VEGF receptor response is an integral chemotactic component in Alzheimer’s disease pathology. J Neurosci 29:3–13CrossRefPubMedGoogle Scholar
  67. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59CrossRefPubMedGoogle Scholar
  68. Salmina AB (2009) Neuron-glia interactions as therapeutic targets in neurodegeneration. J Alzheimers Dis 16:485–502PubMedGoogle Scholar
  69. Sarabi AS, Shen H, Wang Y, Hoffer BJ, Backman CM (2008) Gene expression patterns in mouse cortical penumbra after focal ischemic brain injury and reperfusion. J Neurosci Res 86:2912–2924CrossRefPubMedGoogle Scholar
  70. Sawada M (2009) Neuroprotective and toxic changes in microglia in neurodegenerative disease. Parkinsonism Relat Disord 15(Suppl 1):S39–S41CrossRefPubMedGoogle Scholar
  71. Stichel CC, Muller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294:1–9CrossRefPubMedGoogle Scholar
  72. Tanaka F, Niwa J, Ishigaki S, Katsuno M, Waza M, Yamamoto M, Doyu M, Sobue G (2006) Gene expression profiling toward understanding of ALS pathogenesis. Ann N Y Acad Sci 1086:1–10CrossRefPubMedGoogle Scholar
  73. Tanaka F, Waza M, Niwa J, Yamamoto M, Sobue G (2008) Exploration of pathogenesis-associated molecules and development of disease models for sporadic ALS. Rinsho Shinkeigaku 48:970–972PubMedGoogle Scholar
  74. Tian C, Murrin LC, Zheng JC (2009) Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells. PLoS One 4(5):e5546CrossRefPubMedGoogle Scholar
  75. Vargas MR, Pehar M, Diaz-Amarilla PJ, Beckman JS, Barbeito L (2008) Transcriptional profile of primary astrocytes expressing ALS-linked mutant SOD1. J Neurosci Res 86:3515–3525CrossRefPubMedGoogle Scholar
  76. Wharton SB, O’Callaghan JP, Savva GM, Nicoll JA, Matthews F, Simpson JE, Forster G, Shaw PJ, Brayne C, Ince PG (2009) Population variation in glial fibrillary acidic protein levels in brain ageing: relationship to Alzheimer-type pathology and dementia. Dement Geriatr Cogn Disord 27:465–473CrossRefPubMedGoogle Scholar
  77. Wilson KE, Marouga R, Prime JE, Pashby DP, Orange PR, Crosier S, Keith AB, Lathe R, Mullins J, Estibeiro P, Bergling H, Hawkins E, Morris CM (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 5:3851–3858CrossRefPubMedGoogle Scholar
  78. Yamamoto M, Tanaka F, Sobue G (2007) Gene expression profile of spinal ventral horn in ALS. Brain Nerve 59:1129–1139PubMedGoogle Scholar
  79. Zai L, Ferrari C, Subbaiah S, Havton LA, Coppola G, Strittmatter S, Irwin N, Geschwind D, Benowitz LI (2009) Inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb. J Neurosci 29:8187–8197CrossRefPubMedGoogle Scholar
  80. Zellner M, Veitinger M, Umlauf E (2009) The role of proteomics in dementia and Alzheimer’s disease. Acta Neuropathol 118:181–195CrossRefPubMedGoogle Scholar
  81. Zhang L, Zhang ZG, Liu XS, Hozeska-Solgot A, Chopp M (2007) The PI3 K/Akt pathway mediates the neuroprotective effect of atorvastatin in extending thrombolytic therapy after embolic stroke in the rat. Arterioscler Thromb Vasc Biol 27:2470–2475CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gerson Chadi
    • 1
  • Jessica Ruivo Maximino
    • 1
  • Gabriela Pintar de Oliveira
    • 1
  1. 1.Neuroregeneration Center, Department of NeurologyUniversity of São Paulo School of MedicineSão PauloBrazil

Personalised recommendations