Journal of Molecular Histology

, Volume 40, Issue 2, pp 87–97 | Cite as

Molecular investigations of BKCa channels and the modulatory β-subunits in porcine basilar and middle cerebral arteries

  • Helle Wulf
  • Anders Hay-Schmidt
  • Asser Nyander Poulsen
  • Dan Arne Klaerke
  • Jes Olesen
  • Inger Jansen-Olesen
Original Paper


Large conductance calcium-activated potassium (BKCa) channels are fundamental in the regulation of cerebral vascular basal tone. We investigated the expression of the mRNA transcripts for the BKCa channel and its modulatory β-subunits (β1–β4) in porcine basilar and middle cerebral arteries using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Western blotting was used to detect immunoreactivity for the porcine BKCa channel α-subunit and β-subunit proteins. The BKCa channel α-subunit RNA and protein distribution patterns were visualized using in situ hybridization and immunofluorescence studies, respectively. The study verified that the BKCa channel α-subunit is located to smooth muscle cells of porcine basilar and middle cerebral arteries. The mRNA transcript for β1-, β2- and β4-subunit were shown by RT-PCR in porcine basilar and middle cerebral arteries. However, at the protein level, only, the β1-subunit protein was found by western blotting.


BKCa channels Porcine cerebral arteries RT-PCR Western blotting In situ hybridization Immunofluorescence 



The BKCa antibody was kindly provided by Hans-Günther Knaus, Innsbruck, Austria. We thank Dorthe Meinertz and Birgit Poulsen for their technical assistance. This study was supported by the Lundbeck Foundation as part of the Lundbeck Foundation Center for Neurovascular Signaling (LUCENS), Danish Research Council, Region of Copenhagen, Kong Christian den tiende Foundation, Aase og Ejnar Danielsens Foundation, Foundation of 17.12.1981, Illum Foundation, Augustinus Foundation, Lippmann Foundation, Foundation of Lægevidenskabens Fremme, Brødrene Hartmanns Foundation, Dansk Horton Hovedpineforenings legat, Harboefoundation, Familien Hede Nielsens Foundation and Toyota-Fonden, Denmark.


  1. Aiyar N, Disa J, Stadel JM, Lysko PG (1999) Calcitonin gene-related peptide receptor independently stimulates 3′, 5′-cyclic adenosine monophosphate and Ca2+ signaling pathways. Mol Cell Biochem 197:179–185. doi: 10.1023/A:1006962221332 CrossRefPubMedGoogle Scholar
  2. Asano M, Masuzawa-Ito K, Matsuda T, Suzuki Y, Oyama H, Shibuya M, Sugita K (1993) Functional role of charybdotoxin-sensitive K+ channels in the resting state of cerebral, coronary and mesenteric arteries of the dog. J Pharmacol Exp Ther 267:1277–1285PubMedGoogle Scholar
  3. Behrens R, Nolting A, Reimann F, Schwarz M, Waldschutz R, Pongs O (2000) hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett 474:99–106. doi: 10.1016/S0014-5793(00)01584-2 CrossRefPubMedGoogle Scholar
  4. Benham CD, Bolton TB, Lang RJ, Takewaki T (1986) Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea-pig mesenteric artery. J Physiol 371:45–67PubMedGoogle Scholar
  5. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853. doi: 10.1038/368850a0 CrossRefPubMedGoogle Scholar
  6. Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535. doi: 10.1126/science.1373909 CrossRefPubMedGoogle Scholar
  7. Brenner RJT, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional chracterization of the novel large conductance calcium-activated potassium channel b subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453–6461. doi: 10.1074/jbc.275.9.6453 CrossRefPubMedGoogle Scholar
  8. Candia S, Garcia ML, Latorre R (1992) Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel. Biophys J 63:583–590. doi: 10.1016/S0006-3495(92)81630-2 CrossRefPubMedGoogle Scholar
  9. Dworetzky SI, Boissard CG, Lum-Ragan JT, McKay MC, Post-Munson DJ, Trojnacki JT, Chang CP, Gribkoff VK (1996) Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J Neurosci 16:4543–4550PubMedGoogle Scholar
  10. Edvinsson L, Uddman R (2005) Neurobiology in primary headaches. Brain Res Brain Res Rev 48:438–456. doi: 10.1016/j.brainresrev.2004.09.007 CrossRefPubMedGoogle Scholar
  11. Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine—current understanding and treatment. N Engl J Med 346:257–270. doi: 10.1056/NEJMra010917 CrossRefPubMedGoogle Scholar
  12. Gozalov A, Jansen-Olesen I, Klaerke D, Olesen J (2007) Role of BK(Ca) channels in cephalic vasodilation induced by CGRP, NO and transcranial electrical stimulation in the rat. Cephalalgia 27:1120–1127. doi: 10.1111/j.1468-2982.2007.01409.x CrossRefPubMedGoogle Scholar
  13. Grunnet M, Hay-Schmidt A, Klaerke DA (2005) Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia. Biochim Biophys Acta 1714:114–124. doi: 10.1016/j.bbamem.2005.05.012 CrossRefPubMedGoogle Scholar
  14. Ha TS, Jeong SY, Cho SW, Jeon H, Roh GS, Choi WS, Park CS (2000) Functional characteristics of two BKCa channel variants differentially expressed in rat brain tissues. Eur J Biochem 267:910–918. doi: 10.1046/j.1432-1327.2000.01076.x CrossRefPubMedGoogle Scholar
  15. Hay-Schmidt A, Grunnet M, Abrahamse SL, Knaus HG, Klaerke DA (2003) Localization of Ca2+-activated big-conductance K+ channels in rabbit distal colon. Pflug Arch 446:61–68Google Scholar
  16. Holland M, Langton PD, Standen NB, Boyle JP (1996) Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Br J Pharmacol 117:119–129PubMedGoogle Scholar
  17. Hong KW, Yoo SE, Yu SS, Lee JY, Rhim BY (1996) Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles. Am J Physiol 270:H317–H323PubMedGoogle Scholar
  18. Horiuchi T, Dietrich HH, Tsugane S, Dacey RG Jr (2001) Role of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem. Stroke 32:218–224PubMedGoogle Scholar
  19. Jaggar JH, Leffler CW, Cheranov SY, Tcheranova D, Shuyu E, Cheng X (2002) Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ Res 91:610–617. doi: 10.1161/01.RES.0000036900.76780.95 CrossRefPubMedGoogle Scholar
  20. Jensen BS (2002) BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev 8:353–360PubMedGoogle Scholar
  21. Jiang Z, Wallner M, Meera P, Toro L (1999) Human and rodent MaxiK channel beta-subunit genes: cloning and characterization. Genomics 55:57–67. doi: 10.1006/geno.1998.5627 CrossRefPubMedGoogle Scholar
  22. Kanu A, Leffler CW (2007) Carbon monoxide and Ca2+-activated K+ channels in cerebral arteriolar responses to glutamate and hypoxia in newborn pigs. Am J Physiol Heart Circ Physiol 293:H3193–H3200. doi: 10.1152/ajpheart.00274.2007 CrossRefPubMedGoogle Scholar
  23. Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML (1994) Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem 269:3921–3924PubMedGoogle Scholar
  24. Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16:955–963PubMedGoogle Scholar
  25. Kulawiak B, Kudin AP, Szewczyk A, Kunz WS (2008) BK channel openers inhibit ROS production of isolated rat brain mitochondria. Exp Neurol 212:543–547. doi: 10.1016/j.expneurol.2008.05.004 CrossRefPubMedGoogle Scholar
  26. Lagrutta A, Shen KZ, North RA, Adelman JP (1994) Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J Biol Chem 269:20347–20351PubMedGoogle Scholar
  27. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J (2002) CGRP may play a causative role in migraine. Cephalalgia 22:54–61. doi: 10.1046/j.1468-2982.2002.00310.x CrossRefPubMedGoogle Scholar
  28. Lippiat JD, Standen NB, Harrow ID, Phillips SC, Davies NW (2003) Properties of BK(Ca) channels formed by bicistronic expression of hSloalpha and beta1–4 subunits in HEK293 cells. J Membr Biol 192:141–148. doi: 10.1007/s00232-002-1070-0 CrossRefPubMedGoogle Scholar
  29. Liu Y, Hudetz AG, Knaus HG, Rusch NJ (1998) Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm. Circ Res 82:729–737PubMedGoogle Scholar
  30. McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650. doi: 10.1016/0896-6273(95)90321-6 CrossRefPubMedGoogle Scholar
  31. Meera P, Wallner M, Toro L (2000) A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci USA 97:5562–5567. doi: 10.1073/pnas.100118597 CrossRefPubMedGoogle Scholar
  32. Nardi A, Calderone V, Olesen S-P (2006) Potassium channel openers: the case of BK channel activators. Lett Drug Des Discov 3:210–218. doi: 10.2174/157018006776743242 CrossRefGoogle Scholar
  33. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822PubMedGoogle Scholar
  34. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, Pollentier S, Lesko LM (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110. doi: 10.1056/NEJMoa030505 CrossRefPubMedGoogle Scholar
  35. Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O (2000) Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure. Circ Res 87:E53–E60PubMedGoogle Scholar
  36. Poulsen AN, Klaerke DA (2007) The KCNE1 beta-subunit exerts a transient effect on the KCNQ1 K+ channel. Biochem Biophys Res Commun 363:133–139. doi: 10.1016/j.bbrc.2007.08.146 CrossRefPubMedGoogle Scholar
  37. Poulsen AN, Wulf H, Hay-Schmidt A, Jansen-Olesen I, Olesen J, Klaerke DA (2009) Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues. Biochim Biophys Acta 1788(2):380–389CrossRefPubMedGoogle Scholar
  38. Rae JL, Shepard AR (1998) Molecular biology and electrophysiology of calcium-activated potassium channels from lens epithelium. Curr Eye Res 17:264–275. doi: 10.1076/ceyr. CrossRefPubMedGoogle Scholar
  39. Ray BS, Wolff H (1940) Experimental studies on headache; pain-sensitive structures of the head and their significance in headache. Arch Surg 41:813–856Google Scholar
  40. Riazi MA, Brinkman-Mills P, Johnson A, Naylor SL, Minoshima S, Shimizu N, Baldini A, McDermid HE (1999) Identification of a putative regulatory subunit of a calcium-activated potassium channel in the dup(3q) syndrome region and a related sequence on 22q11.2. Genomics 62:90–94. doi: 10.1006/geno.1999.5975 CrossRefPubMedGoogle Scholar
  41. Salvatore C, Hershey J, Corcoran H, Fay J, Johnston V, Moore E, Mosser S, Burgey C, Paone D, Shaw A, Graham S, Vacca J, Williams T, Koblan K, Kane S (2008) Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-Difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxamide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther 324:416–421. doi: 10.1124/jpet.107.130344 CrossRefPubMedGoogle Scholar
  42. Sato T, Saito T, Saegusa N, Nakaya H (2005) Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation 111:198–203. doi: 10.1161/01.CIR.0000151099.15706.B1 CrossRefPubMedGoogle Scholar
  43. Shieh CC, Turner SC, Zhang XF, Milicic I, Parihar A, Jinkerson T, Wilkins J, Buckner SA, Gopalakrishnan M (2007) A-272651, a nonpeptidic blocker of large-conductance Ca2+-activated K+ channels, modulates bladder smooth muscle contractility and neuronal action potentials. Br J Pharmacol 151:798–806. doi: 10.1038/sj.bjp.0707278 CrossRefPubMedGoogle Scholar
  44. Silberstein SD (2004) Migraine pathophysiology and its clinical implications. Cephalalgia 24(Suppl 2):2–7. doi: 10.1111/j.1468-2982.2004.00892.x CrossRefPubMedGoogle Scholar
  45. Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci USA 96:4137–4142. doi: 10.1073/pnas.96.7.4137 CrossRefPubMedGoogle Scholar
  46. Weiger TM, Holmqvist MH, Levitan IB, Clark FT, Sprague S, Huang WJ, Ge P, Wang C, Lawson D, Jurman ME, Glucksmann MA, Silos-Santiago I, DiStefano PS, Curtis R (2000) A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J Neurosci 20:3563–3570PubMedGoogle Scholar
  47. Wellman GC, Nathan DJ, Saundry CM, Perez G, Bonev AD, Penar PL, Tranmer BI, Nelson MT (2002) Ca2+ sparks and their function in human cerebral arteries. Stroke 33:802–808. doi: 10.1161/hs0302.104089 CrossRefPubMedGoogle Scholar
  48. Werner ME, Zvara P, Meredith AL, Aldrich RW, Nelson MT (2005) Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol 567:545–556. doi: 10.1113/jphysiol.2005.093823 CrossRefPubMedGoogle Scholar
  49. Wulf H, Hay-Schmidt A, Poulsen AN, Klaerke DA, Olesen J, Jansen-Olesen I (2008) Molecular studies of BKCa channels in intracranial arteries: presence and localization. Cell Tissue Res 334(3):359–369CrossRefPubMedGoogle Scholar
  50. Xia XM, Ding JP, Zeng XH, Duan KL, Lingle CJ (2000) Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J Neurosci 20:4890–4903PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Helle Wulf
    • 1
  • Anders Hay-Schmidt
    • 2
  • Asser Nyander Poulsen
    • 3
  • Dan Arne Klaerke
    • 4
  • Jes Olesen
    • 1
  • Inger Jansen-Olesen
    • 1
  1. 1.Department of Neurology & Danish Headache Center, Glostrup Research Institute, Glostrup Hospital, Faculty of Health SciencesUniversity of CopenhagenGlostrupDenmark
  2. 2.Department of Neuroscience and Pharmacology, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Animal- and Veterinary Basic Sciences, Faculty of Life SciencesUniversity of CopenhagenFrederiksbergDenmark
  4. 4.Department of Physiology and Biochemistry, IBHV, Faculty of Life SciencesUniversity of CopenhagenFrederiksbergDenmark

Personalised recommendations