Advertisement

Journal of Molecular Histology

, Volume 38, Issue 5, pp 501–506 | Cite as

Cell cycle related modulations in Runx2 protein levels are independent of lymphocyte enhancer-binding factor 1 (Lef1) in proliferating osteoblasts

  • Mario Galindo
  • Rachel A. Kahler
  • Nadiya M. Teplyuk
  • Janet L. Stein
  • Jane B. Lian
  • Gary S. Stein
  • Jennifer J. Westendorf
  • Andre J. van Wijnen
Original Paper

Abstract

Runt-related transcription factor Runx2 regulates osteogenic phenotype commitment and attenuates osteoblast growth. Runx2 levels are cell cycle regulated and maximal in the G1 phase of proliferating osteoblasts and during quiescence. The Wnt/Lrp5-Frizzled/β-catenin/Lef-Tcf signaling cascade also controls progression along the osteogenic lineage with a net anabolic effect that promotes bone formation. However, Lef1 opposes the osteoblast maturation promoting activity of Runx2. Here we examined whether Lef1 controls Runx2 expression during the cell cycle or onset of quiescence in osteoblasts. We inhibited Lef1 expression using short hairpin (sh) RNA interference in stably transfected MC3T3-E1 cells. In asynchronously growing osteoblasts, expression of Lef1 shRNA diminishes Lef1 protein levels, but does not affect Runx2 levels. Cells arrested in different cell cycle stages using mimosine (late G1), hydroxyurea or aphidicolin (S phase) or nocodazole (mitosis) exhibit expected reductions in Runx2 protein levels despite reductions in Lef1. Serum deprived MC3T3-E1 cells normally upregulate Runx2 protein regardless of Lef1 deficiency, although loss of Lef1 reduces cyclin A and increases cyclin D1 expression upon serum withdrawal. Thus, Runx2 protein levels during the cell cycle and onset of quiescence are regulated independently of Lef1, one of the major transcriptional inducers of Wnt signaling in proliferating cells.

Keywords

Runx2 Wnt signaling Lef1 Cell cycle Aphidicolin Mimosine Nocodazole 

Notes

Acknowledgments

We thank Judy Rask for assistance with the preparation of our manuscript and the members of our laboratories for stimulating discussions throughout these studies. This study was supported by National Institutes of Health grants R01 AR49069 (AvW), R01 AR050074 (JW), R01 AR39588, P01 CA82834 and P30 DK32520 (GSS & JBL). The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

References

  1. Banerjee C, McCabe LR, Choi J-Y et al (1997) Runt homology domain proteins in osteoblast differentiation: AML-3/CBFA1 is a major component of a bone specific complex. J Cell Biochem 66:1–8PubMedCrossRefGoogle Scholar
  2. Drissi H, Luc Q, Shakoori R et al (2000) Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. J Cell Physiol 184:341–350PubMedCrossRefGoogle Scholar
  3. Drissi H, Pouliot A, Koolloos C et al (2002) 1,25(OH)2Vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 274:323–333PubMedCrossRefGoogle Scholar
  4. Ducy P, Karsenty G (1998) Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol 10:614–619PubMedCrossRefGoogle Scholar
  5. Galceran J, Farinas I, Depew MJ et al (1999) Wnt3a-/–like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 13:709–717PubMedGoogle Scholar
  6. Galceran J, Sustmann C, Hsu SC et al (2004) LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev 18:2718–2723PubMedCrossRefGoogle Scholar
  7. Galindo M, Pratap J, Young DW et al (2005) The bone-specific expression of RUNX2 oscillates during the cell cycle to support a G1 related anti-proliferative function in osteoblasts. J Biol Chem 280:20274–20285PubMedCrossRefGoogle Scholar
  8. Gaur T, Lengner CJ, Hovhannisyan H et al (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating RUNX2 gene expression. J Biol Chem 280:33132–33140PubMedCrossRefGoogle Scholar
  9. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24PubMedGoogle Scholar
  10. Kahler RA, Galindo M, Lian J et al (2006) Lymphocyte enhancer-binding factor 1 (Lef1) inhibits terminal differentiation of osteoblasts. J Cell Biochem 97:969–983PubMedCrossRefGoogle Scholar
  11. Kahler RA, Westendorf JJ (2003) Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J Biol Chem 278:11937–11944PubMedCrossRefGoogle Scholar
  12. Kansara M, Thomas DM (2007) Molecular pathogenesis of osteosarcoma. DNA Cell Biol 26:1–18PubMedCrossRefGoogle Scholar
  13. Kratochwil K, Galceran J, Tontsch S et al (2002) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(−/−) mice. Genes Dev 16:3173–3185PubMedCrossRefGoogle Scholar
  14. Oosterwegel M, van de Wetering M, Timmerman J et al (1993) Differential expression of the HMG box factors TCF-1 and LEF-1 during murine embryogenesis. Development 118:439–448PubMedGoogle Scholar
  15. Pratap J, Galindo M, Zaidi SK et al (2003) Cell growth regulatory role of Runx2 during proliferative expansion of pre-osteoblasts. Cancer Res 63:5357–5362PubMedGoogle Scholar
  16. Rajgopal A, Young DW, Mujeeb KA et al (2007) Mitotic control of RUNX2 phosphorylation by both CDK1/cyclin B kinase and PP1/PP2A phosphatase in osteoblastic cells. J Cell Biochem 100:1509–1517PubMedCrossRefGoogle Scholar
  17. Shen R, Wang X, Drissi H et al (2006) Cyclin d1-Cdk4 induce Runx2 ubiquitination and degradation. J Biol Chem 281:16347–16353PubMedCrossRefGoogle Scholar
  18. Thomas DM, Carty SA, Piscopo DM et al (2001) The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Molec Cell 8:303–316PubMedCrossRefGoogle Scholar
  19. Thomas DM, Johnson SA, Sims NA et al (2004) Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol 167:925–934PubMedCrossRefGoogle Scholar
  20. van Genderen C, Okamura RM, Farinas I et al (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8:2691–2703PubMedCrossRefGoogle Scholar
  21. van der Horst G, van der Werf SM, Farih-Sips H et al (2005) Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 20:1867–1877PubMedCrossRefGoogle Scholar
  22. van Wijnen AJ, Stein GS, Gergen JP et al (2004) Nomenclature for Runt-related (RUNX) proteins. Oncogene 23:4209–4210PubMedCrossRefGoogle Scholar
  23. Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341:19–39PubMedCrossRefGoogle Scholar
  24. Young DW, Hassan MQ, Pratap J et al (2007a) Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature 445:442–446PubMedCrossRefGoogle Scholar
  25. Young DW, Hassan MQ, Yang X-Q et al (2007b) Mitotic retention of gene expression patterns by the cell fate determining transcription factor Runx2. Proc Natl Acad Sci USA 104:3189–3194PubMedCrossRefGoogle Scholar
  26. Zaidi SK, Young DW, Pockwinse SH et al (2003) Mitotic partitioning and selective reorganization of tissue specific transcription factors in progeny cells. Proc Natl Acad Sci USA 100:14852–14857PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Mario Galindo
    • 1
    • 2
  • Rachel A. Kahler
    • 3
  • Nadiya M. Teplyuk
    • 1
  • Janet L. Stein
    • 1
  • Jane B. Lian
    • 1
  • Gary S. Stein
    • 1
  • Jennifer J. Westendorf
    • 3
  • Andre J. van Wijnen
    • 1
  1. 1.Department of Cell Biology and Cancer CenterUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
  3. 3.Departments of Orthopedic Surgery and Molecular Biology & BiochemistryMayo ClinicRochesterUSA

Personalised recommendations