Journal of Molecular Histology

, Volume 37, Issue 5–7, pp 309–319 | Cite as

Role of SUMO/Ubc9 in DNA Damage Repair and Tumorigenesis

  • Stergios J. Moschos
  • Yin-Yuan Mo
Original Paper


DNA damage repair is an important cell function for genome integrity and its deregulation can lead to genomic instability and development of malignancies. Sumoylation is an increasingly important ubiquitin-like modification of proteins affecting protein stability, enzymatic activity, nucleocytoplasmic trafficking, and protein-protein interactions. In particular, several important DNA repair enzymes are subject to sumoylation, which appears to play a role in copping with DNA damage insults. Recent reports indicate that Ubc9, the single SUMO E2 enzyme catalyzing the conjugation of SUMO to target proteins, is overexpressed in certain tumors, such as lung adenocarcinoma, ovarian carcinoma and melanoma, suggestive of its clinic significance. This review summarizes the most important DNA damage repair pathways which are potentially affected by Ubc9/SUMO and their role in regulating the function of several proteins involved in the DNA damage repair machinery.


Ubc9 SUMO Sumoylation DNA repair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Robert Johnson Foundation for Melanoma Research (to SJM) and the CA102630 and BC045418 (to YM).


  1. Aoki K, Ishida R, Kasai M (1997) Isolation and characterization of a cDNA encoding a Translin-like protein, TRAX. FEBS Lett 401:109--12PubMedCrossRefGoogle Scholar
  2. Azuma Y, Arnaoutov A, Dasso M (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 163:477--87PubMedCrossRefGoogle Scholar
  3. Baba D, Maita N, Jee J-G, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa (2005) Crystal structure of thymidine DNA glycosylase conjugated to SUMO-1. Nature 435:979--82PubMedCrossRefGoogle Scholar
  4. Bouchard VJ, Rouleau M, Poirier GG (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 31:446--54PubMedCrossRefGoogle Scholar
  5. Buschmann T, Lerner D, Lee CG, Ronai Z (2001) The Mdm-2 amino terminus is required for Mdm2 binding and SUMO-1 conjugation by the E2 SUMO-1 conjugating enzyme Ubc9. J Biol Chem 276:40389--0395PubMedCrossRefGoogle Scholar
  6. Chen L, Chen J (2003) MDM2-ARF complex regulates p53 sumoylation. Oncogene 22:5348--357PubMedCrossRefGoogle Scholar
  7. Chiu H, Ring BC, Sorrentino RP, Kalamarz M, Garza D, Govind S (2005) dUbc9 negatively regulates the Toll-NF-kappaB pathways in larval hematopoiesis and drosomycin activation in Drosophila. Dev Biol 288:60--72PubMedCrossRefGoogle Scholar
  8. Eladad S, Ye TZ, Hu P, Leversha M, Beresten S, Matunis MJ, Ellis NA (2005) Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet 14:1351--365PubMedCrossRefGoogle Scholar
  9. Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT (2003) P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11:1043--054PubMedCrossRefGoogle Scholar
  10. Gocke CB, Yu H, Kang J (2005) Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Biol Chem 280:5004--012PubMedCrossRefGoogle Scholar
  11. Gu S, Du Y, Chen J, Liu Z, Bradbury EM, Hu CA, Chen X (2004) Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Proteome Res 3:1191--00PubMedCrossRefGoogle Scholar
  12. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102--110PubMedCrossRefGoogle Scholar
  13. Hardeland U, Steinacher R, Jiricny J, Schar P (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21:1456--464PubMedCrossRefGoogle Scholar
  14. Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899--908PubMedCrossRefGoogle Scholar
  15. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1--2PubMedCrossRefGoogle Scholar
  16. Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, Seki T, Saitoh H, Fukagawa T, Yagi H, Enomoto T. (2002) Ubc9 is essential for viability of higher eukaryotic cells. Exp Cell Res 280:212--21PubMedCrossRefGoogle Scholar
  17. Heale JT, Ball AR, Schmiesing JA, Kim J-S, Kong X, Zhou S, Hudson DF, Earnshaw WC, Yokomori K (2006) Condesin I interacts with the PARP-1-XRCC1 Complex and functions in DNA single-strand break repair. Mol Cell 21:837--48PubMedCrossRefGoogle Scholar
  18. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135--41PubMedCrossRefGoogle Scholar
  19. Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115:565--76PubMedCrossRefGoogle Scholar
  20. Isik S, Sano K, Tsutsui K, Seki M, Enomoto T, Saitoh H, Tsutsui K (2003) The SUMO pathway is required for selective degradation of DNA topoisomerase IIbeta induced by a catalytic inhibitor ICRF-193(1). FEBS Lett 546:374--78PubMedCrossRefGoogle Scholar
  21. Jacquiau HR, van Waardenburg RC, Reid RJ, Woo MH, Guo H, Johnson ES, Bjornsti MA (2005) Defects in SUMO (small ubiquitin-related modifier) conjugation and deconjugation alter cell sensitivity to DNA topoisomerase I-induced DNA damage. J Biol Chem 280:23566--3575PubMedCrossRefGoogle Scholar
  22. Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14:491--00PubMedCrossRefGoogle Scholar
  23. Kawabe Y, Seki M, Seki T, Wang W-S, Imamura O, Furuichi Y, Saitoh H, Enomoto T (2000) Covalent modification of the Werner’s syndrome gene product with the ubiquitin-related protein, SUMO-1. J Biol Chem 275:20963--0966PubMedCrossRefGoogle Scholar
  24. Kovalenko OV, Plug AW, Haaf T, Gonda DK, Ashley T, Ward DC, Radding CM, Golub EI (1996) Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci USA 93:2958--963PubMedCrossRefGoogle Scholar
  25. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5:465--75PubMedCrossRefGoogle Scholar
  26. Leach CA, Michael WM (2005) Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J Cell Biol 171:947--54PubMedCrossRefGoogle Scholar
  27. Li W, Hesabi B, Babbo A, Pacione C, Liu J, Chen DJ, Nickoloff JA, Shen Z (2000) Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res 28:1145--153PubMedCrossRefGoogle Scholar
  28. Lin JY, Ohshima T, Shimotohno K, Schmidt D, Muller S (2004) Association of Ubc9, an E2 ligase for SUMO conjugation, with p53 is regulated by phosphorylation of p53. FEBS Lett 573:15--8PubMedCrossRefGoogle Scholar
  29. Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, Robertson KD (2004) Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res 32:598--10PubMedCrossRefGoogle Scholar
  30. Ljungman M (2000) Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2:208--25PubMedCrossRefGoogle Scholar
  31. Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, Roberts RL, Liebler DC (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17:1706--715PubMedCrossRefGoogle Scholar
  32. Mao Y, Sun M, Desai SD, Liu LF (2000) SUMO-1 conjugation to topoisomerase I: a possible repair response to topoisomerase-mediated DNA damage. Proc Natl Acad Sci USA 97:4046--051PubMedCrossRefGoogle Scholar
  33. Masson M, Menissier-de Murcia J, Mattei MG, de Murcia G, Niedergang CP (1997) Poly(ADP-ribose) polymerase interacts with a novel human ubiquitin conjugating enzyme: hUbc9. Gene 190:287--96PubMedCrossRefGoogle Scholar
  34. McDoniels-Silvers AL, Nimri CF, Stoner GD, Lubet RA, You M (2002) Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin Cancer Res 8:1127--138PubMedGoogle Scholar
  35. Melchior F, Hengst L (2002) SUMO-1 and p53. Cell Cycle 1:245--49PubMedGoogle Scholar
  36. Mo YY, Moschos SJ (2005) Targeting Ubc9 for cancer therapy. Expert Opin Ther Targets 9:1203--216PubMedCrossRefGoogle Scholar
  37. Mo YY, Yu Y, Ee PL, Beck WT (2004) Overexpression of a dominant-negative mutant Ubc9 is associated with increased sensitivity to anticancer drugs. Cancer Res 64:2793--798PubMedCrossRefGoogle Scholar
  38. Mo YY, Yu Y, Shen Z, Beck WT (2002) Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J Biol Chem 277:2958--964PubMedCrossRefGoogle Scholar
  39. Mo YY, Yu Y, Theodosiou E, Rachel Ee PL, Beck WT (2005) A role for Ubc9 in tumorigenesis. Oncogene 24:2677--683PubMedCrossRefGoogle Scholar
  40. Moschos SJ, Athanassiou H, Edington H, Corrado K, Becker D, Kirkwood JM (2005) Proteomic analysis of melanoma-infiltrated lymph nodes gains insights into the molecular profile of metastatic melanoma (poster 8524). AACR Annual Meeting Anaheim, CAGoogle Scholar
  41. Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9:769--779PubMedCrossRefGoogle Scholar
  42. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123--33PubMedCrossRefGoogle Scholar
  43. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428--33PubMedGoogle Scholar
  44. Potts PR, Yu H (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021--7032PubMedCrossRefGoogle Scholar
  45. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455--461PubMedCrossRefGoogle Scholar
  46. Romanenko AM, Kinoshita A, Wanibuchi H, Wei M, Zaparin WK, Vinnichenko WI, Vozianov AF, Fukushima S (2006) Involvement of ubiquitination and sumoylation in bladder lesions induced by persistent long-term low dose ionizing radiation in humans. J Urol 175:739--743PubMedCrossRefGoogle Scholar
  47. Saitoh H, Pizzi MD, Wang J (2002) Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J Biol Chem 277:4755--763PubMedCrossRefGoogle Scholar
  48. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39--5PubMedCrossRefGoogle Scholar
  49. Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 99:2872--877PubMedCrossRefGoogle Scholar
  50. Schwartz DC, Hochstrasser M (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 28:321--28PubMedCrossRefGoogle Scholar
  51. Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44--5PubMedCrossRefGoogle Scholar
  52. Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373:78--1PubMedCrossRefGoogle Scholar
  53. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ (1996a) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 37:183--86CrossRefGoogle Scholar
  54. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ (1996b) Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics 36:271--79CrossRefGoogle Scholar
  55. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100:13225--3230PubMedCrossRefGoogle Scholar
  56. Shin JA, Choi ES, Kim HS, Ho JC, Watts FZ, Park SD, Jang YK (2005) SUMO modification is involved in the maintenance of heterochromatin stability in fission yeast. Mol Cell 19:817--28PubMedCrossRefGoogle Scholar
  57. Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188--91PubMedCrossRefGoogle Scholar
  58. Suzuki H, Seki M, Kobayashi T, Kawabe Yi, Kaneko H, Kondo N et al (2001) The N-terminal internal region of BLM is required for the formation of dots/rod-like structures which are associated with SUMO-1. Biochem Biophys Res Commun 2286:322--27CrossRefGoogle Scholar
  59. Takahashi H, Hatakeyama S, Saitoh H, Nakayama KI (2005) Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem 280:5611--621PubMedCrossRefGoogle Scholar
  60. Tiefenbach J, Novac N, Ducasse M, Eck M, Melchior F, Heinzel T (2006) SUMOylation of the Corepressor N-CoR Modulates Its Capacity to Repress Transcription. Mol Biol Cell 17:1643--651PubMedCrossRefGoogle Scholar
  61. Ulrich HD (2005) The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem 6:1735--743PubMedCrossRefGoogle Scholar
  62. Wang QE, Zhu Q, Wani G, El-Mahdy MA, Li J, Wani AA (2005) DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res 33:4023--034PubMedCrossRefGoogle Scholar
  63. Weger S, Hammer E, Heilbronn R (2005) Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 579:5007--012PubMedCrossRefGoogle Scholar
  64. Wood RD, Mitchell M, Lindahl T (2005) Human DNA repair genes, 2005. Mutat Res 577:275--83PubMedGoogle Scholar
  65. Woods YL, Xirodimas DP, Prescott AR, Sparks A, Lane DP, Saville MK (2004) p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase. J Biol Chem 279:50157--0166PubMedCrossRefGoogle Scholar
  66. Yang SH, Sharrocks AD (2004) SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13:611--17PubMedCrossRefGoogle Scholar
  67. Yurchenko V, Xue Z, Sadofsky MJ (2006) SUMO modification of human XRCC4 regulated its localization and function in DNA double-strand break repair. Mol Cell Biol 26:1786--794PubMedCrossRefGoogle Scholar
  68. Zhou F, Xue Y, Lu H, Chen G, Yao X (2005) A genome-wide analysis of sumoylation-related biological processes and functions in human nucleus. FEBS Lett 579:3369--375PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Research PavilionUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Department of Medical Microbiology, Immunology and Cell BiologySouthern Illinois UniversitySpringfieldUSA

Personalised recommendations