Journal of Molecular Histology

, Volume 36, Issue 5, pp 317–323 | Cite as

Do we know anything about how left–right asymmetry is first established in the vertebrate embryo?



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afzelius B.A. (1976). A human syndrome caused by immotile cilia. Science 193: 317–319PubMedCrossRefGoogle Scholar
  2. Bartoloni L., Bloiun J.L., Pan Y., Gehrig C., Maiti A.K., Sacamuffa N., Rossier C., Jorissen M., Armengot M., Meeks M., et al. (2002). Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl. Acad. Sci. USA 99:10282–10286CrossRefPubMedGoogle Scholar
  3. Bellomo D., Lander A., Harragan I., Brown N.A. (1996). Cell proliferation in mammalian gastrulation: The ventral node and notochord are relatively quiescent. Dev. Dyn. 205:471–485CrossRefPubMedGoogle Scholar
  4. Brennan J., Norris D.P. and Robertson E.J. (2002). Nodal activity in the node governs left-right asymmetry. Genes and Dev. 16:2339–2344CrossRefPubMedGoogle Scholar
  5. Brown N.A. and Wolpert L. (1990). The development of handedness in left/right asymmetry. Development 109:1–9PubMedGoogle Scholar
  6. Brueckner M. (2001). Cilia propel the embryo in the right direction. Am. J. Med.Genet. 101:339–344CrossRefPubMedGoogle Scholar
  7. Bunney T.D., De Boer A.H. and Levin M. (2003). Fusicoccin signaling reveals 14–3-3 protein function as a novel step in left–right patterning during amphibian embryogenesis. Development 130:4847–4858CrossRefPubMedGoogle Scholar
  8. Cartwright J.H., Piro O., Taval I. (2004). Fluid dynamic basis of the embryonic development of left–right asymmetry in vertebrates. Proc. Natl. Acad. Sci. USA 101:7234–7239CrossRefPubMedGoogle Scholar
  9. Collignon J., Varlet I., Robertson E.J. (1996). Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381:155–158CrossRefPubMedGoogle Scholar
  10. Essner J.J., Amack J.D., Nyholm M.K., Harris E.R. and Yost H.J. (2005). Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left–right development of the brain, heart, and gut. Development 132:1247–1260CrossRefPubMedGoogle Scholar
  11. Essner J.J., Vogan K.J., Wagner M.K. Tabin C.J., Yost H.J. and Brueckner M. (2002). Conserved function for embryonic nodal cilia. Nature 418:37–38CrossRefPubMedGoogle Scholar
  12. Fischer A., Viebahn C., Blum M. (2002). Fgf8 acts as a right determinant during establishment of the left–right axis in the rabbit. Curr. Biol. 12:1807–1816CrossRefPubMedGoogle Scholar
  13. Guichard C., Harricane M.C., Lafitte J.J., Godard P., Zaegel M., Tack V., Lalau G., Bouvagnet P. (2001). Axonemal dynein intermediate-chain gene (DNA11) mutations result in situs inversus and primary ciliary dyskinesia (Kartegener syndrome). Am. J. Hum. Genet. 68:1030–1035CrossRefPubMedGoogle Scholar
  14. Huangfu D., Liu A., Rakeman A.S., Murcia N.S., Niswander L., Anderson K.V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87CrossRefPubMedGoogle Scholar
  15. Igarashi P., Somlo S. (2002). Genetics and pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 13:2384–2398CrossRefPubMedGoogle Scholar
  16. Kawakami Y., Raya, Á., Raya R.M., Rodríguez-Esteban C., Izpisúa Belmonte J.C. (2005). Retinoic acid signaling links left–right asymmetric patterning and bilaterally symmtric somitogenesis in the zebrafish embryo. Nature 435:165–171CrossRefPubMedGoogle Scholar
  17. Kramer K.L., Barnette J.B. and Yost H.J. (2002). PKCgamma regulates syndecan-2 inside-out signaling during Xenopus left–right development. Cell 111:981–990CrossRefPubMedGoogle Scholar
  18. Kramer K.L. and Yost H.J. (2002). Ectodermal syndecan-2 mediates left–right axis formation in migrating mesoderm as a cell-nonautomous Vg1 cofactor. Dev Cell 2:115–124CrossRefPubMedGoogle Scholar
  19. Koulen P., Cai Y., Geng L., Maeda Y., Nishimura S., Witzgall, Ehrlich B.E. and Somlo S. (2002). Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 4:191–197CrossRefPubMedGoogle Scholar
  20. Levin M. (2004). The embryonic origins of left–right asymmetry. Crit. Rev. Oral Biol. Med. 15:197–206PubMedCrossRefGoogle Scholar
  21. Levin M., Johnson R.L., Stern C.D., Kuehn M., Tabin C. (1995). A molecular pathway determining left–right asymmetry in chick embryogenesis. Cell 82:803–814CrossRefPubMedGoogle Scholar
  22. Levin M. and Mercola M. (1998). Gap junctions are involved in the early generation of left right asymmetry. Dev Biol. 203:90–105CrossRefPubMedGoogle Scholar
  23. Levin M. and Mercola M. (1999). Gap junction-mediated transfer of left–right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node. Development 126:4703–4714PubMedGoogle Scholar
  24. Levin M. and Nascone N. (1997). Two molecular models of initial left–right asymmetry generation. Med. Hypoth. 49:429–435CrossRefGoogle Scholar
  25. Levin M., Pagan S., Roberts D.J., Cooke J., Kuehn M.R. and Tabin C.J. (1997). Left/right patterning signals and the independent regulation of different aspects of situs in the chick embryo. Dev Biol. 189:57–67CrossRefPubMedGoogle Scholar
  26. Levin M., Thorlin T., Robinson K., Nogi T., Mercola M. (2002). Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left–right patterning. Cell 111:77–89CrossRefPubMedGoogle Scholar
  27. Lowe L.A., Supp D.M., Sampath K., Yokoyama T., Wright C.V., Porter S.S., Overbeek P., Kuehn M.R. (1996). Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381:158–161CrossRefPubMedGoogle Scholar
  28. Marszalek J.R., Ruiz-Lozano P., Roberts E., Chien K.R. and Goldstein L.S. (1999). Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl. Acad. Sci. USA 96:5043–5048CrossRefPubMedGoogle Scholar
  29. McGrath J., Somlo S., Mukawa S., Tian Y., Brueckner M. (2003). Two populations of node monocilia initiate left–right asymmetry in the mouse. Cell 114:61–73CrossRefPubMedGoogle Scholar
  30. Meno C., Saijoh Y., Fujii H., Ikeda M., Yokoyama M., Toyoda Y., Hamada H. (1996). Left–right asymmetric gene expression of the TGFbeta-family member lefty in mouse embryos. Nature 381:151–155CrossRefPubMedGoogle Scholar
  31. Meyers E.N. and Martin G.R. (1999). Differences in left–right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285:403–406PubMedCrossRefGoogle Scholar
  32. Murcia N.S., Richards W.G., Yoder B.K., Mucenski M.L., Dunlap J.R. and Woychik R.P. (2000). The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left–right axis determination. Development 127:2347–2355PubMedGoogle Scholar
  33. Nauli S.M., Alenghat F.J., Luo Y., Williams E., Vassilev P., Li X., Elia A.E., Lu W., Brown E.M., Quinn S.J., Ingber D.E. and Zhou J. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33:129–137CrossRefPubMedGoogle Scholar
  34. Nonaka S., Tanaka Y., Okada Y., Takeda S., Harada A. Kanai Y., Kido, and Hirokawa N. (1998). Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in miced lacking KIF3B motor protein. Cell 95:829–837CrossRefPubMedGoogle Scholar
  35. Nonaka S., Shiratori H., Saijoh Y., Hamada H. (2002). Determination of left–right patterning of the mouse embryo by artificial nodal flow. Nature 418:96–99CrossRefPubMedGoogle Scholar
  36. Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall, W, Hamada H (2005) De novo formation of left–right asymmetry by posterior tilt of node cilia. PLoS Biol. in pressGoogle Scholar
  37. Olbrich H., Haffner K., Kisbert A., Volkel A., Voltz A., Sasmaz G., Reinhardt R., Hennig S., Lehrach H., Konitzko. N., et al. (2002). Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry. Nat. Genet. 30:143–144CrossRefPubMedGoogle Scholar
  38. Okada Y., Nonaka S., Saijoh Y., Hamada H., Hirokawa N. (1999). Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4:459–468CrossRefPubMedGoogle Scholar
  39. Okada Y., Takeda S., Tanaka Y., Izpisua Belmonte, J-C, and Hirokawa N. (2005). Mechanism of nodal flow: a conserved symmetry breaking event in left–right axis determination. Cell 121:633–644CrossRefPubMedGoogle Scholar
  40. Pennarum G., Escudier E., Chapelin C., Bridoux A.M., Cacheux V., Roger G., Clement A., Goossens M., Amselem S., Duriez B. (1999). Loss-of-function mutations in a human gene related to Chlamydomonas reinhardti dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65:1508–1519CrossRefPubMedGoogle Scholar
  41. Pennekamp P., Karcher C., Fischer A., Schweickert A., Skryabin B., Horst J., Blum M., Dworniczak B. (2002). The ion channel polycystin-2 is required for left–right axis determination in mice. Curr. Biol. 12:938–943CrossRefPubMedGoogle Scholar
  42. Praetorius H.A. and Spring K.R. (2001). Bending the MDCK primary channel cilium increases intracellular calcium. J. Membrane Biol. 184:71–79CrossRefGoogle Scholar
  43. Rankin C.T., Bunton C.T., Lawler A.M. and Lee S.-J. (2000). Regulation of left–right patterning in mice by growth/differentiation factor-1. Nat. Genet. 24:262–265CrossRefPubMedGoogle Scholar
  44. Stern C., Yu R., Kakizuka A., Kintner C., Matthews L., Vale W. et al. (1995). Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo. Dev. Biol. 172: 192–205CrossRefPubMedGoogle Scholar
  45. Sulik K., Dehart D.B., Inagaki T., Carson J.L., Vrablic T., Gesteland K., Schoenwolf G.C. (1994). Morphogenesis of the murine node and notochordal plate. Dev. Dyn. 201:260–278PubMedGoogle Scholar
  46. Supp D.M., Witte D.P., Potter S.S. and Brueckner M. (1997). Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389:963–966CrossRefPubMedGoogle Scholar
  47. Supp D.M., Brueckner M., Kuehn M.R., Witte D.P., Lowe L.A., McGrath J., Corrales J., Potter S.S. (1999). Targeted deletion of the ATP binding domain of left–right dynein confirms its role in specifying development of left–right asymmetries. Development 126:5495–5504PubMedGoogle Scholar
  48. Tabin C.J. and Vogan K.J. (2003). A two-cilia model for vertebrate left–right axis specification. Genes and Dev. 17:1–6CrossRefPubMedGoogle Scholar
  49. Takeda S., Yonekawa Y., Tanaka Y., Okada Y., Nonaka S., Hirokawa N. (1999). Left–right asymmetry and kinesin superfamily protein KIF3A: New insights in determination of laterality and mesoderm induction by kif3A−/+ mice analysis. J. Cell Biol: 145:825–836CrossRefPubMedGoogle Scholar
  50. Tanaka Y., Okada Y. and Hirokawa N. (2005). FGF-induced leftward nodal flow of SHH/RA-containing vesicles is critical for laterality. Nature 435:172–177CrossRefPubMedGoogle Scholar
  51. Zhang X.M., Ramalho-Santos M. and McMahon A.P. (2001). Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 105:781–792CrossRefPubMedGoogle Scholar
  52. Zhang Q., Davenport J.R., Croyle M.J., Haycraft C.J. and Yoder B.K. (2005). Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737(orpk) mutant mice. Lab Invest. 85:45–64PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations