Journal of Molecular Histology

, Volume 36, Issue 3, pp 207–215 | Cite as

The tidemark of the chondro-osseous junction of the normal human knee joint

  • T.J. Lyons
  • R.W. Stoddart
  • S.F. McClure
  • J. McClure


The chondro-osseous junction includes the junction between calcified and non-calcified cartilage matrices often referred to as the tidemark. A detailed knowledge of the structure, function and pathophysiology of the chondro-osseous junction is essential for an understanding both of the normal elongation of bones and of the pathogenesis of osteoarthrosis. In this study the molecular anatomy of the tidemark was studied using histochemical techniques, including lectin histochemistry, on blocks of normal cartilage from human knee joints. The tidemark stained with H&E, picro-sirius red, toluidine blue, safranin O and methyl green, but not with alcian blue in the presence of magnesium chloride at 0.05 M or above. It stained with only four lectins, those from Datura stramonium, Maclura pomifera, Erythrina crystagalli and Helix pomatia, out of the 19 used. Therefore, it is rich in collagen and contains hyaluronan, but appears to lack the glycosaminoglycans of ‘conventional’ proteoglycans and it expresses a very limited and distinctive lectin staining glycoprofile, which is probably attributable to specific glycoproteins. In addition, the tidemark had a distinct microanatomical trilaminate appearance. From all of these results it is clear that this part of the chondro-osseous junctional region is chemically more complex and distinctive than has previously been described.


Hyaluronan Toluidine Blue Alcian Blue Safranin Magnesium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bullough, PG, Jagannath, A 1983The morphology of the calcification front in articular cartilage: its significance in joint functionJ Bone Joint Surg Br657278PubMedGoogle Scholar
  2. Chen, R, Wang, S, Chen, X, Xiong, S 2002A histochemical and ultrastructural study of the tidemark in human condylar cartilageChin J Stomatol37425427Google Scholar
  3. De Bont, LGM, Liem, RSB, Havinga, P, Boering, G, Korst, J 1986Collagenous network in cartilage of human femoral condyles – a light microscopic and scanning electron microscopic studyActa Anat1264147PubMedGoogle Scholar
  4. Debray, H, Decont, D, Strecker, G, Spik, G, Montreuil, J 1981Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosyl proteinsEur J Biochem1174155PubMedGoogle Scholar
  5. Dequeker, J, Mokassa, L, Aerssens, J, Boonen, S 1997Bone density and local growth factors in generalized osteoarthritisMicrosc Res Tech37358371CrossRefPubMedGoogle Scholar
  6. Dmitrovsky, E, Lane, LB, Bullough, PG 1978The characterisation of the tidemark in human articular cartilageMetab Bone Dis Relat Res1115118CrossRefGoogle Scholar
  7. Downs, F, Herp, A, Moschera, J, Pigman, W 1973Beta-elimination and reduction reactions and some applications of dimethylsulfoxide on submaxillary glycoproteinsBiochim Biophys Acta328182192PubMedGoogle Scholar
  8. Fawns, HT, Landells, JW 1953Histochemical studies of rheumatic conditions. 1. Observations on the fine structures of the matrix of normal bone and cartilageAnn Rheum Dis12105113PubMedGoogle Scholar
  9. Gannon, FH, Sokoloff, L 1999Histomorphometry of the aging human patella: histologic criteria and controlsOsteoarthr Cartil7173181CrossRefPubMedGoogle Scholar
  10. Gannon, JM, Walker, G, Fischer, M, Carpenter, R, Thompson, RC, Oegema, TR 1991Localization of type X collagen in canine growth plate and adult canine articular cartilageJ Orthop Res9485494CrossRefPubMedGoogle Scholar
  11. Green, WT, Garland, NM, Eanes, ED, Sokoloff, L 1970Microradiography study of the calcified layer of articular cartilageArch Pathol90151158PubMedGoogle Scholar
  12. Havelka, S, Horn, V, Spohrova, D, Valouch, P 1984The calcified-non calcified cartilage interface; the tidemarkActa Biol Hung35271279PubMedGoogle Scholar
  13. Hough, AJ, Banfield, WG, Mottram, FC, Sokoloff, L 1974The osteochondral junction of mammalian joints: an ultrastructural and microanalytic studyLab Invest31685695PubMedGoogle Scholar
  14. Inoue, H 1981Alterations in the collagen framework of osteoarthritic cartilage and subchondral boneInt Orthop54752CrossRefPubMedGoogle Scholar
  15. Jones, CJ, Stoddart, RW 1986A post-embedding avidin-biotin peroxidase system to demonstrate the light and electron microscopic localization of lectin binding sites in rat kidney tubulesHistochem J18371379CrossRefPubMedGoogle Scholar
  16. Lee, X, Thompson, A, Zhang, Z, Ton-that, H, Biesterfeldt, J, Ogata, C, Xu, L, Johnston, RA, Young, NM 1998Structure of the complex of Maclura pomifera agglutinin and the T-antigen disaccharide, Galβ1,3GalNAcJ Biol Chem27363126318CrossRefPubMedGoogle Scholar
  17. Lillie, RD 1977HJ Conn’s Biological Stains.9Williams & WilkinsBaltimoreGoogle Scholar
  18. McClure, J 1982The demonstration of calcification fronts by in vivo and in vitro tetracycline labellingJ Clin Pathol3512781282PubMedGoogle Scholar
  19. Meachim, G, Allibone, R 1984Topographical variation in the calcified zone of upper femoral articular cartilageJ Anat139341352PubMedGoogle Scholar
  20. Oettmeier, R, Abendroth, K, Oettmeier, S 1989Analyses of the tidemark on human femoral heads. 1. Histochemical ultrastructural and microanalytic characterization of the normal structure of the intercartilaginous junctionActa Morphol Hung37155168PubMedGoogle Scholar
  21. Redler, I, Mow, VC, Zimny, ML, Mansell, J 1975The ultrastructure and biomechanical significance of the tidemark of articular cartilageClin Orthop112357362PubMedGoogle Scholar
  22. Rees, JA, Ali, SY 1988Ultrastructural localisation of alkaline phosphatase activity in osteoarthritic human articular cartilageAnn Rheum Dis47747753PubMedGoogle Scholar
  23. Revell, PA, Pirie, C, Amir, G, Rashad, S, Walker, F 1990Metabolic activity in the calcified zone of cartilage: observations on tetracycline labelled articular cartilage in human osteoarthritic hipsRheumatol Int10143147PubMedGoogle Scholar
  24. Rucklidge, GJ, Milne, G, Robins, SP 1996Collagen type X: a component of the surface of normal human, pig and rat articular cartilageBiochem Biophys Res Commun224297302CrossRefPubMedGoogle Scholar
  25. Scott, JE, Dorling, J 1965Differential staining of acid glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solutionsHistochemie5221233CrossRefPubMedGoogle Scholar
  26. Stoddart, RW, Jones, CJ 1988Lectin histochemistry and cytochemistry–light microscopy, avidin–biotin amplification on resin-embedded sectionsRhodes, JMMilton, JD eds. Lectin Methods and ProtocolsHumana PressTotowa, New Jersy2139Google Scholar
  27. Schwartz, ER, Ogle, RC, Thompson, RC 1974Aryl sulphatase activities in normal and pathologic human cartilageArthritis Rheum17455467PubMedGoogle Scholar
  28. Toda, N, Doi, H, Jimbo, A, Matsumoto, I, Sero, N 1981Interaction of sulfated glycosaminoglycans with lectinsJ Biol Chem25653455349PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • T.J. Lyons
    • 1
  • R.W. Stoddart
    • 2
  • S.F. McClure
    • 2
  • J. McClure
    • 3
  1. 1.Newcastle Department of Forensic MedicineAustralia
  2. 2.Division of Laboratory and Regenerative Medicine, The Medical SchoolThe University of ManchesterUK
  3. 3.Department of Musculoskeletal PathologyThe RJAH NHS Orthopaedic TrustShropshireUK

Personalised recommendations