Journal of Molecular Histology

, Volume 35, Issue 7, pp 659–665 | Cite as

Development and validation of computational models of cellular interaction

  • R. H. Smallwood
  • W. M. L. Holcombe
  • D. C. Walker


In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues.


Biological System Computational Model System Biology Biological Model Cellular Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balanescu T, Cowling AJ., Gheorgescu H, Gheorghe M, Holcombe M, Vertan C (1999)Communicating stream X-machines systems are no more than X-machines.J Univ Comput Sci 5 (9):494–507.Google Scholar
  2. Boey SK, Boal DH, Discher DE (1998)Simulations of the erythro-cyte cytoskeleton at large deformation.I.Microscopic Models. Biophys J 75:1573–1583.Google Scholar
  3. Brodland GW, Chen HH 2000.The mechanics of heterotypic cell aggregates:Insights from Computer Simulations.J Biomech Eng 122:402–407.Google Scholar
  4. Brodland GW Veldhuis JH (2002)Computer simulations of mitosis and interdependencies between mitosis orientation, cell shape and epithelia reshaping.J Biomech 35:673–681.Google Scholar
  5. Chen HH, Brodland GW (2000)Cell-level nite element studies of viscous cells in planar aggregates.J Biomech Eng 122:394–401.Google Scholar
  6. Discher DE, Boal DH, Boey SK (1998)Simulations of the erythrocyte cytoskeleton at large deformation.II.Micropipette Aspiration.Biophys J 75:1584–1597.Google Scholar
  7. Fisher MJ, Paton RC, Matsuno K (1999).Intracellular signalling proteins as 'smart 'agents in parallel distributed processes.BioSyst 50 159–171.Google Scholar
  8. Georghe M, Holcombe M, Kefalas, P (2001)Computational models for collective foraging, 4th International Workshop on Information Processing in Cells and Tissues, Lueven, Belgium.Google Scholar
  9. Glazier JA, Graner F (1993)Simulation of the Differential Adhesion driven Rearrangement of Biological Cells.Phys Rev E47:2128–2153.Google Scholar
  10. Hogeweg P (2000)Evolving mechanisms of morphogenesis:on the interplay between differential adhesion and cell differentiation.J Theor Biol 203:317–333.Google Scholar
  11. Holcombe M, Ipate F (1998)Correct systems:building a business process solution.Springer Verlag, London.Google Scholar
  12. Ingber DE (1993)Cellular tensegrity:de ning new rules of biological design that govern the cytoskeleton.J Cell Sci 104:613–627.Google Scholar
  13. Ingber DE, Heidemann SR, Lamoureux P, Buxbaum RE (2000) Opposing views on tensegrity as a structural framework for understanding cell mechanics.J Appl Physiol 89:1663–1678.Google Scholar
  14. Lee YKS, McIntire LV, Zygourakis K (1995)A cellular automaton model for the proliferation of migrating contact-Inhibited Cells. Biophys J 69:1284–1298.Google Scholar
  15. Lim JHF, Davies GA (1990)A stochastic model to simulate the growth of anchorage dependent cells on flat surfaces.Biotechnol Bioeng 36:547–562.Google Scholar
  16. Forestell SP, MBJ, Kalogerakis N, Behie LA (1992)A cellular automaton model for the growth of anchorage-dependent mammalian cells used in vaccine production.Chem Eng Sci 47:2381–2386.Google Scholar
  17. Morel D, Marcelpoil R, Brugal G (2001)A proliferation control net-work model:the simulation of two-dimensional epithelial homeostasis.Acta Biotheor 49:219–234.Google Scholar
  18. Onami S, Hamahashi S, Nagasaki M, Miyano S, Kitano H (2002) Automatic acquisition of cell lineage through 4D microscopy and analysis of early C.elegans embryogenesis.In:Kitano H, ed.Foundations of Systems Biology.Cambridge, Ma: MIT Press.Google Scholar
  19. Palsson E (2001)A three-dimensional model of cell movement in multi-cellular systems.Future Gen Comput Sys 17:835–852.Google Scholar
  20. Ryder EF, Bullard L, Hone J, Olmstead J, Ward MO (1999)Graphical simulation of early development of the cerebral cortex.Comput methods Prog Biomed 59:107–114.Google Scholar
  21. Ruaan RC, Tsai GJ, Tsao GT (1993)Monitoring and Modelling of Density-Dependent Growth of Anchorage-Dependent Cells.Biotechnol and Bioeng 41:380–389.Google Scholar
  22. Savill NJ, Hogeweg P (1997)Modelling Morphogenesis:From Single Cells to Crawling Slugs.J Theor Biol 184:229–235.Google Scholar
  23. Shafrir Y, Forgacs G (2002)Mechanotransduction through the cytoskeleton.Am J Physiol Cell Physiol 282:C479-C486.Google Scholar
  24. Stamenovic D, Fredberg JJ, Wang N, Butler JP and Ingber DE (1996)A microstructural approach to cytoskeletal mechanics based on tensegrity.J Theor Biol 181:125–136.Google Scholar
  25. Steel MA, Penny D (1993)Distributions of tree comparison metrics-some new results.Systematic Biol 42:126–141.Google Scholar
  26. Stekel D, Rashbass J, Williams ED (1995)A computer graphic simulation of squamous epithelium.J theor biol 175:283–293.Google Scholar
  27. Sulston JE, Schierenberg E, White JG, Thomson JN (1983)The embryonic cell lineage of the Nematode Caenorhabditis elegans. Dev Biol 100:64–119.Google Scholar
  28. Zygourakis K, Bizios R, Markenscoff P (1991a)Proliferation of anchorage-dependent contact-inhibited cells:I.Development of theoretical models based on cellular automata.Biotechnol and Bioeng 38:459–470.Google Scholar
  29. Zygourakis K, Markenscoff P, Bizios R, (1991b)Proliferation of anchorage-dependent contact-inhibited cells:II.Experimental results and validation of the theoretical models.Biotechnol and Bioeng 38:471–479.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. H. Smallwood
    • 1
  • W. M. L. Holcombe
    • 1
  • D. C. Walker
    • 1
  1. 1.Department of Computer ScienceUniversity of SheffieldSheffieldUK

Personalised recommendations