Advertisement

High Energy Chemistry

, Volume 39, Issue 4, pp 268–272 | Cite as

Methane Pyrolysis Stimulated by Admixture of Atomic Hydrogen: 2. Mechanism Analysis and Kinetics Calculation

  • I. E. Baranov
  • S. A. Demkin
  • V. K. Zhivotov
  • I. I. Nikolaev
  • V. D. Rusanov
  • N. G. Fedotov
Plasma Chemistry

Abstract

The kinetics of methane pyrolysis stimulated by the introduction of atomic hydrogen into the reaction medium from an arcjet plasma source was analyzed. Numerical simulation of the reaction kinetics demonstrated that the thermal pyrolysis at lower temperatures (1800 K or lower) followed the radical chain mechanism with short chains (a chain length of 2 or 3), and the addition of atomic hydrogen considerably increased the rate of the process. An analysis of the kinetics of pyrolysis in a stirred reactor showed that acetylene was formed immediately after methane degradation without the buildup of by-products in the reaction medium.

Keywords

Hydrogen Physical Chemistry Methane Pyrolysis Atomic Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Baranov, I.E., Demkin, S.A., Zhivotov, V.K., et al., Khim. Vys. Energ., 2004, vol. 38, no.3, p. 222 [High Energy Chem., 2004, vol. 38, no. 3, p. 191].Google Scholar
  2. 2.
    Knorre, E., Kurs khimicheskoi kinetiki (Chemical Kinetics Textbook), Moscow: Nauka, 1973.Google Scholar
  3. 3.
    Kassel, L.S., J. Am. Chem. Soc., 1932, vol. 54, p. 3949.CrossRefGoogle Scholar
  4. 4.
    Frenclach M., J. Colloid Interface Sci., 1987, vol. 118, p. 485.Google Scholar
  5. 5.
    NIST Database, US Department of Commerce, National American Institute of Standards and Technology, 1994.Google Scholar
  6. 6.
    “Workbench.” Programma firmy “Kintekh” (The Workbench Software Developed by Kintekh), Russia.Google Scholar
  7. 7.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1992, vol. 3, p. 535.Google Scholar
  8. 8.
    Neftekhimicheskaya promyshlennost’. Spravochnik (Petrochemical Industry: A Handbook), Moscow: Neft’ i gaz, 1999.Google Scholar
  9. 9.
    Polak, L.S., Ovsyannikov, A.A., and Slovetskii, D.I., Teoreticheskaya i prikladnaya plazmokhimiya (Theoretical and Applied Plasma Chemistry), Moscow: Nauka, 1975.Google Scholar
  10. 10.
    Zhorov, Yu.M., Kinetika promyshlennykh organicheskikh reaktsii (Kinetics of Industrial Organic Reactions), Moscow: Khimiya, 1989.Google Scholar
  11. 11.
    Zhorov, Yu.M., Termodinamika i kinetika reaktsii v uglevodorodakh (Thermodynamics and Kinetics of Reactions in Hydrocarbons), Moscow: Nauka, 1987.Google Scholar
  12. 12.
    Ovsyannikov, V.A., Turbulentnye strui v plazme (Turbulent Jets in Plasma), Moscow: Nauka, 1985.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • I. E. Baranov
    • 1
  • S. A. Demkin
    • 1
  • V. K. Zhivotov
    • 1
  • I. I. Nikolaev
    • 1
  • V. D. Rusanov
    • 1
  • N. G. Fedotov
    • 1
  1. 1.Kurchatov Institute Russian Research CenterMoscowRussia

Personalised recommendations