Journal of Heuristics

, Volume 24, Issue 1, pp 83–109 | Cite as

Dynamic region visit routing problem for vehicles with minimum turning radius

  • Douglas G. Macharet
  • Armando Alves Neto
  • Vila F. da Camara Neto
  • Mario F. M. Campos
Article
  • 60 Downloads

Abstract

In this paper we address the problem of planning optimized routes among dynamically selected target regions for vehicles with a turning radius motion constraint, hereinafter called dynamic Dubins traveling salesman problem with neighborhoods (DDTSPN). Initially, we present a heuristic to solve a simpler version of this problem, called off-line step, where only previously given targets are concerned. We further extend this approach for the more complex case of dynamic scenarios, called on-line step, addressing the inclusion of new targets during the execution of the initial route, whilst minimizing the impact on the total traveled distance. Formal analyzes of our techniques are provided, presenting upper bounds for the total length of the final tour. Results with statistical investigation over a large number of trials in a simulated environment are also provided. Finally, to demonstrate the applicability of our technique in solving the DDTSPN at real-world scenarios, we also report on results of an experiment performed with a real car-like robot.

Keywords

Dynamic vehicle routing problem Dubins vehicle Traveling salesman problem with neighborhoods 

Notes

Acknowledgements

This work was developed with support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Fundação Centro de Análise, Pesquisa e Inovação Tecnológica (FUCAPI).

References

  1. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ (2007)MATHGoogle Scholar
  2. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math. 55, 197–218 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29, 560–581 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. Ausiello, G., Bonifaci, V., Laura, L.: The on-line asymmetric traveling salesman problem. J. Discret Algorithms 6(2mo), 290–298 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. Bertsimas, D.J., van Ryzin, G.: A stochastic and dynamic vehicle routing problem in the Euclidean plane. Oper. Res. 39(4), 601–615 (1991)CrossRefMATHGoogle Scholar
  6. Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.: Dynamic vehicle routing for robotic systems. Proc. IEEE 99(9), 1482–1504 (2011)CrossRefGoogle Scholar
  7. Christofides, N.: Technical note-bounds for the travelling-salesman problem. Oper. Res. 20(5), 1044–1056 (1972)CrossRefMATHGoogle Scholar
  8. Comarela, G., Gonçalves, K., Pappa, G.L., Almeida, J., Almeida, V.: Robot routing in sparse wireless sensor networks with continuous ant colony optimization. In: 13th Annual Conference on Companion on Genetic and Evolutionary Computation (GECCO), pp. 599–606. ACM, New York, NY (2011)Google Scholar
  9. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)MathSciNetCrossRefMATHGoogle Scholar
  10. Fraichard, T., Scheuer, A.: From reeds and Shepp’s to continuous-curvature paths. IEEE Trans. Rob. 20(6), 1025–1035 (2004)CrossRefGoogle Scholar
  11. Isaacs, J.T., Klein, D.J., Hespanha, J.P.: Algorithms for the traveling salesman problem with neighborhoods involving a Dubins’ vehicle. In: IEEE American Control Conference. pp. 1704–1709 (2011)Google Scholar
  12. Jaillet, P., Wagner, M.R.: Online routing problems: value of advanced information as improved competitive ratios. Transp. Sci. 40(2), 200–210 (2006)CrossRefGoogle Scholar
  13. Jaillet, P., Wagner, M.R.: Online vehicle routing problems: a survey. In: Golden, B., Raghavan, S., Wasil, E., Sharda, R., Voß, S. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, Operations Research/Computer Science Interfaces Series, vol. 43, pp. 221–237. Springer, Berlin (2008)CrossRefGoogle Scholar
  14. Khouadjia, M.R., Sarasola, B., Alba, E., Jourdan, L., Talbi, E.G.: A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Appl. Soft Comput. 12(4), 1426–1439 (2012)CrossRefGoogle Scholar
  15. Larsen, A., Madsen, O.B., Solomon, M.M.: Recent developments in dynamic vehicle routing systems. In: Golden, B., Raghavan, S., Wasil, E., Sharda, R., Voß, S. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, Operations Research/Computer Science Interfaces Series, vol. 43, pp. 199–218. Springer, Berlin (2008)CrossRefGoogle Scholar
  16. Le Ny, J., Feron, E.: An approximation algorithm for the curvature-constrained traveling salesman problem. In: Proceedings of the 43rd Annual Allerton Conference on Communications, Control and Computing (2005)Google Scholar
  17. Le Ny, J., Feron, E., Frazzoli, E.: On the dubins traveling salesman problem. IEEE Trans. Autom. Control 57(1), 265–270 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)MathSciNetCrossRefMATHGoogle Scholar
  19. Ma, X., Castañón, D.A.: Receding horizon planning for dubins traveling salesman problems. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5453–5458 (2006)Google Scholar
  20. Macharet, D.G., Alves Neto, A., da Camara Neto, V.F., Campos, M.F.M.: Nonholonomic path planning optimization for Dubins’ vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’2011), pp. 4208–4213 (2011)Google Scholar
  21. Macharet, D.G., Alves Neto, A., da Camara Neto, V.F., Campos, M.F.M.: An evolutionary approach for the Dubins’ traveling salesman problem with neighborhoods. In: 21th Genetic and Evolutionary Computation Conference (2012a)Google Scholar
  22. Macharet, D.G., Alves Neto, A., da Camara Neto, V.F., Campos, M.F.M.: Data gathering tour optimization for Dubins’ vehicles. In: IEEE Congress on Evolutionary Computation (2012b)Google Scholar
  23. Macharet, D.G., Neto, A.A., da Camara Neto, V.F., Campos, M.F.M.: Efficient target visiting path planning for multiple vehicles with bounded curvature. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3830–3836 (2013)Google Scholar
  24. Medeiros, A., Urrutia, S.: Discrete optimization methods to determine trajectories for Dubins’ vehicles. Electron. Notes Discret. Math. 36, 17–24 (2010). international Symposium on Combinatorial Optimization (ISCO)CrossRefMATHGoogle Scholar
  25. Obermeyer, K.J., Oberlin, P., Darbha, S.: Sampling-based roadmap methods for a visual reconnaissance UAV. In: AIAA Conference on Guidance, Navigation and Control (2010)Google Scholar
  26. Pillac, V., Gendreau, M., Guret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. Psaraftis, H.N.: Dynamic vehicle routing problems. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies, Studies in Management Science and Systems, vol. 16, pp. 223–248. North-Holland, Amsterdam (1988)Google Scholar
  28. Psaraftis, H.N., Wen, M., Kontovas, C.A.: Dynamic vehicle routing problems: three decades and counting. Networks 67(1), 3–31 (2016).  https://doi.org/10.1002/net.21628 MathSciNetCrossRefGoogle Scholar
  29. Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for dubins’ vehicle. In: IEEE American Control Conference (ACC), vol. 2, pp. 786–791 (2005)Google Scholar
  30. Savla, K., Frazzoli, E., Bullo, F.: Traveling salesperson problems for the dubins’ vehicle. IEEE Trans. Autom. Control 53(6), 1378–1391 (2008)MathSciNetCrossRefMATHGoogle Scholar
  31. Shanmugavel, M., Tsourdos, A., White, B., Żbikowski, R.: Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs. Control Eng. Pract. 18(9), 1084–1092 (2010)CrossRefGoogle Scholar
  32. Shkel, A.M., Lumelsky, V.: Classification of the Dubins’ set. Robot. Auton. Syst. 34(4), 179–202 (2001)CrossRefMATHGoogle Scholar
  33. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)MathSciNetCrossRefMATHGoogle Scholar
  34. Yadlapalli, S., Malik, W., Rathinam, S., Darbha, S.: A lagrangian-based algorithm for a combinatorial motion planning problem. In: Proceedings of the 46th IEEE Conference on Decision and Control (CDC), pp. 5979–5984 (2007)Google Scholar
  35. Yu, X., Hung, J.Y.: A genetic algorithm for the Dubins Traveling Salesman Problem. In: Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), pp. 1256–1261 (2012)Google Scholar
  36. Yuan, B., Orlowska, M., Sadiq, S.: On the optimal robot routing problem in wireless sensor networks. IEEE Trans. Knowl. Data. Eng. 19(9), 1252–1261 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Douglas G. Macharet
    • 1
  • Armando Alves Neto
    • 2
  • Vila F. da Camara Neto
    • 3
  • Mario F. M. Campos
    • 1
  1. 1.Department of Computer ScienceUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Electronic EngineeringUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Fundação Centro de Análise, Pesquisa e Inovação TecnológicaManausBrazil

Personalised recommendations