Journal of Heuristics

, Volume 21, Issue 4, pp 501–521 | Cite as

Hybrid evolutionary algorithm for the b-chromatic number

  • Iztok Fister
  • Iztok Peterin
  • Marjan Mernik
  • Matej Črepinšek


The b-chromatic number of a graph \(G\) is a maximum integer \(\varphi (G)\) for which there exists a proper \(\varphi (G)\)-coloring with the additional property that each color class contains a vertex that is adjacent to one of the vertices within each color class. In contrast to many theoretical results discovered over the last decade and a half there are no computer running experiments on \(\varphi (G)\) in the literature. This work presents a hybrid evolutionary algorithm for graph b-coloring. Its performance has been tested on some instances of regular graphs where their b-chromatic number is theoretically known in advance, as well as by comparing with a brute force algorithm solving the regular graphs up to 12 vertices. In addition, the algorithm has been tested on some larger graphs taken from a DIMACS challenge benchmark that also proved to be challenging for the algorithms searching for the classical chromatic number \(\chi (G)\).


Graph b-coloring Local search Hybrid evolutionary algorithms Tabucol 


  1. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151, 379–388 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  3. Balakrishnan, R., Raj, S.F.: Bounds for the b-chromatic number of \(G-v\). Discret. Appl. Math. 161, 1173–1179 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. Balakrishnan, R., Raj, S.F., Kavaskar, T.: Coloring the Mycielskian. Proc. Int. Conf. ICDM 1401, 53–57 (2008)Google Scholar
  5. Barth, D., Cohen, J., Faik, T.: On the b-continuity property of graphs. Discret. Appl. Math. 155, 1761–1768 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. Blöchliger, I., Zufferey, N.: A reactive Tabu search using partial solutions for the graph coloring problem. In: Kral, D., Sgall, J. (eds.), Coloring Graphs from Lists with Bounded Size of their Union: Result from Dagstuhl Seminar, vol. 03391 (2003)Google Scholar
  7. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)MathSciNetCrossRefGoogle Scholar
  8. Blum, C., Puchinger, J., Raidl, G.A., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)CrossRefGoogle Scholar
  9. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  10. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)CrossRefMATHGoogle Scholar
  11. Brelaz, D.: New methods to color vertices of a graph. Commun. ACM 22(4), 251–256 (1979)MathSciNetCrossRefMATHGoogle Scholar
  12. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  13. Brown, R., Roli, A.: Chromatic scheduling and the chromatic number problem. Manag. Sci. 19(4), 456–463 (1972)CrossRefMATHGoogle Scholar
  14. Cabello, S., Jakovac, M.: On the b-chromatic number of regular graphs. Discret. Appl. Math. 159, 1303–1310 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs. Eur. J. Oper. Res. 32, 260–266 (1987)CrossRefMATHGoogle Scholar
  16. Chaouche, F., Berrachedi, A.: Some bounds for the b-chromatic number of a generalized Hamming graphs. Far East J. Appl. Math. 26, 375–391 (2007)MathSciNetMATHGoogle Scholar
  17. Chiarandini, M., Dumitrescu, I., Stützle, T.: Stochastic local search algorithms for the graph colouring problem, In: Gonzalez, T.F. (Ed.), Handbook of Approximation Algorithms and Metaheuristics, pp. 63.1–63.17. Chapman Hall, Boca Raton (2007)Google Scholar
  18. Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Johnson, D.S., Mehrotra, A., Trick, M. (eds.) Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 112–125 (2002)Google Scholar
  19. Corteel, S., Valencia-Pabon, M., Vera, J.-C.: On approximating the b-chromatic number. Discret. Appl. Math. 146, 106–110 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. Culberson, J.: Graph Coloring Page (2014). Accessed 20 Feb 2014
  21. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35 (2013)Google Scholar
  22. Darwin, C.: The Origin of Species. John Murray, London (1859)Google Scholar
  23. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  24. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature—PPSN V, 5th International Conference, pp. 745–754 (1998)Google Scholar
  25. Effantin, B.: The b-chromatic number of power graphs of complete caterpillars. J. Discret. Math. Sci. Cryptogr. 8, 483–502 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. Effantin, B., Kheddouci, H.: The b-chromatic number of some power graphs. Discret. Math. Theor. Comput. Sci. 6, 45–54 (2003)MathSciNetMATHGoogle Scholar
  27. Effantin, B., Kheddouci, H.: Exact values for the b-chromatic number of a power complete \(k\)-ary tree. J. Discret. Math. Sci. Cryptogr. 8, 117–129 (2005)MathSciNetCrossRefGoogle Scholar
  28. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  29. Elghazel, H., Deslandres, V., Hacid, M.-S. Dussauchoy, A., Kheddoucci, H.: A new clustering approach for symbolic data and its validation: application to the healthcare data. In: F. Esposito et all (Eds.) Proceedings of the International Conference on Foundations of Intelligent Systems—ISMIS 2006, LNAI, vol. 4203, pp. 473–482. Springer, Berlin (2006)Google Scholar
  30. Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63, 437–464 (1996)CrossRefMATHGoogle Scholar
  31. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)MATHGoogle Scholar
  32. Gaceb, D., Eglin, V., Lebourgeois, F., Emptoz, H.: Improvement of postal mail sorting system. Int. J. Document Anal. Recogn. 11, 67–80 (2008)CrossRefGoogle Scholar
  33. Gaceb, D., Eglin, V., Lebourgeois, F., Emptoz, H.: Robust approach of address block localization in business mail by graph coloring. Int. Arab. J. Inform. Tech. 6, 221–229 (2009)Google Scholar
  34. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)MathSciNetCrossRefMATHGoogle Scholar
  35. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33, 2547–2562 (2006)MathSciNetCrossRefMATHGoogle Scholar
  36. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the \(k\)-coloring problem. Discret. Appl. Math. 156(2), 267–279 (2008)MathSciNetCrossRefMATHGoogle Scholar
  37. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)MathSciNetCrossRefMATHGoogle Scholar
  38. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston (1996)Google Scholar
  39. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)MathSciNetCrossRefMATHGoogle Scholar
  40. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discret. Appl. Math. 156(13), 2551–2560 (2008)MathSciNetCrossRefGoogle Scholar
  41. Hoang, C.T., Kouider, M.: On the b-dominating coloring of graphs. Discret. Appl. Math. 152, 176–186 (2005)MathSciNetCrossRefMATHGoogle Scholar
  42. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA (1992)Google Scholar
  43. Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Computer Science Press, Rockville (1978)MATHGoogle Scholar
  44. Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discret. Appl. Math. 91, 127–141 (1999)MathSciNetCrossRefMATHGoogle Scholar
  45. Jakovac, M., Klavžar, S.: The b-chromatic number of cubic graphs. Graphs Comb. 26, 107–118 (2010)CrossRefMATHGoogle Scholar
  46. Jakovac, M., Peterin, I.: On the b-chromatic number of some products. Studia Sci. Math. Hung. 49, 156–169 (2012)MathSciNetMATHGoogle Scholar
  47. Jakovac, M., Peterin, I.: The b-chromatic index of a graph. Bull. Malays. Math. Sci. Soc. (2013) doi: 10.1007/s40840-014-0088-7
  48. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation, part II graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)CrossRefGoogle Scholar
  49. Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, vol. 26. American Mathematical Society, Providence (1996)MATHGoogle Scholar
  50. Kouider, M., Mahéo, M.: Some bounds for the b-chromatic number of a graph. Discret. Math. 256, 267–277 (2002)CrossRefMATHGoogle Scholar
  51. Kouider, M., Mahéo, M.: The b-chromatic number of the Cartesian product of two graphs. Studia Sci. Math. Hung. 44, 49–55 (2007)MATHGoogle Scholar
  52. Kouider, M., Zaker, M.: Bounds for the b-chromatic number of some families of graphs. Discret. Math. 306, 617–623 (2006)MathSciNetCrossRefMATHGoogle Scholar
  53. Koza, J.R.: Genetic Programming 2: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)Google Scholar
  54. Kratochvíl, J., Tuza, Z., Voigt, M.: On the b-chromatic number of graphs. Lect. Notes Comput. Sci. 2573, 310–320 (2002)CrossRefGoogle Scholar
  55. Kubale, M.: Graph Colorings. American Mathematical Society, Providence (2004)CrossRefMATHGoogle Scholar
  56. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. bureau Stand. 84(6), 489–506 (1979)MathSciNetCrossRefMATHGoogle Scholar
  57. Lima, C.V.G.C., Martins, N.A., Sampaio, L., Santos, M.C., Silva, A.: b-Chromatic index of graphs. Electron. Notes Discret. Math. 44, 9–14 (2013)CrossRefGoogle Scholar
  58. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 1, 241–250 (2010)CrossRefGoogle Scholar
  59. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS J. Comput. 20(2), 302–316 (2008)MathSciNetCrossRefMATHGoogle Scholar
  60. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17, 1–34, (2009)Google Scholar
  61. Meringer, M.: Regular Graphs (2014)., Accessed 20 Feb 2014
  62. Sewell, E.C.: An improved algorithm for exact graph coloring, In D.S. Johnson and M.A. Trick, editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, DIMACS series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 359–376. American Mathematical Society, Providence (1996)Google Scholar
  63. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Iztok Fister
    • 1
  • Iztok Peterin
    • 1
  • Marjan Mernik
    • 1
  • Matej Črepinšek
    • 1
  1. 1.Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia

Personalised recommendations