Skip to main content
Log in

A backbone based TSP heuristic for large instances

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

We introduce a reduction technique for large instances of the traveling salesman problem (TSP). This approach is based on the observation that tours with good quality are likely to share many edges. We exploit this observation by neglecting the less important tour space defined by the shared edges, and searching the important tour subspace in more depth. More precisely, by using a basic TSP heuristic, we obtain a set of starting tours. We call the set of edges which are contained in each of these starting tours as pseudo-backbone edges. Then we compute the maximal paths consisting only of pseudo-backbone edges, and transform the TSP instance to another one with smaller size by contracting each such path to a single edge. This reduced TSP instance can be investigated more intensively, and each tour of the reduced instance can be expanded to a tour of the original instance. Combining our reduction technique with the currently leading TSP heuristic of Helsgaun, we experimentally investigate 32 difficult VLSI instances from the well-known TSP homepage. In our experimental results we set world records for seven VLSI instances, i.e., find better tours than the best tours known so far (two of these world records have since been improved upon by Keld Helsgaun and Yuichi Nagata, respectively). For the remaining instances we find tours that are equally good or only slightly worse than the world record tours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We omitted the two largest instances \(sra104815\) and \(ara238025\), where the fixed edges procedure of LKH seems not to work because of the large size.

References

  • Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    Google Scholar 

  • Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J., Espinoza, D., Goycoolea, M., Helsgaun, K.: Certification of an optimal tour through 85900 cities. Oper. Res. Lett. 37(1), 11–15 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15(1), 82–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Balas, E., Simonetti, N.: Linear time dynamic programming algorithms for new classes of restricted TSPs: a computational study. INFORMS J. Comput. 13, 56–75 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Bekker, H., Braad, E.P., Goldengorin, B., et al.: Using bipartite and multidimensional matching to select the roots of a system of polynomial equation. In: Gervasi, O. (ed.) Computational Science and Its Applications-ICCSA, Lecture Notes in Computer Science, pp. 397–406. Springer, Berlin (2005)

    Google Scholar 

  • Climer, S., Zhang, W.: Searching for Backbones and Fat: A Limit-Crossing Approach with Applications. Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), pp. 707–712. AAAI Press, Menlo Park (2002).

  • Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2011)

    Google Scholar 

  • Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(3), 233–248 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Ernst, C., Dong, C., Jäger, G., Molitor, P., Richter, D.: Finding good tours for huge Euclidean TSP instances by iterative backbone contraction. In: Chen, B. (ed.) AAIM 2010, Lecture Notes in Computer Science, pp. 119–130. Springer, Berlin (2010)

    Google Scholar 

  • Fischer, T., Merz, P.: Reducing the size of traveling salesman problem instances by fixing edges. EvoCOP 2007, Lecture Notes in Computer Science, pp. 72–83. Springer, Berlin (2007)

    Google Scholar 

  • Gamboa, D., Rego, C., Glover, F.: Data structures and ejection chains for solving large scale traveling salesman problems. Eur. J. Oper. Res. 160(1), 154–171 (2005)

    Article  MATH  Google Scholar 

  • Gamboa, D., Rego, C., Glover, F.: Implementation analysis of efficient heuristic algorithms for the traveling salesman problem. Comput. Oper. Res. 33(4), 1154–1172 (2006)

    Article  MATH  Google Scholar 

  • Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of \({\cal NP}\)-Completeness. Series of Books in the Mathematical Sciences. W.H. Freeman and Company, San Francisco (1979)

    Google Scholar 

  • Germs, R., Goldengorin, B., Turkensteen, M.: Lower tolerance-based branch and bound algorithms for the ATSP. Comput. Oper. Res. 39(2), 291–298 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Goldengorin, B., Jäger, G., Molitor, P.: Some Basics on tolerances. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006, Lecture Notes in Computer Science, pp. 194–206. Springer, Berlin (2006a)

    Google Scholar 

  • Goldengorin, B., Jäger, G., Molitor, P.: Tolerances applied in combinatorial optimization. J. Comput. Sci. 2(9), 716–734 (2006b)

    Article  Google Scholar 

  • Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and Its Variations. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  • Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Helsgaun, K.: General \(k\)-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1(2–3), 119–163 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, D., McGeoch, L.: The traveling salesman problem: a case study in local optimization. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. Wiley, Chicester (1997)

    Google Scholar 

  • Kilby, P., Slaney, J.K., Walsh, T.: The backbone of the travelling salesperson. In: Kaelbling, L.P., Saffiotti A. (Eds.): Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 175–180, 2005.

  • Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B. (eds.): The traveling salesman problem—a guided tour of combinatorial optimization. Wiley, Chicester (1985)

    MATH  Google Scholar 

  • Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  • Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Syst. 5(3), 299–326 (1991)

    MATH  MathSciNet  Google Scholar 

  • Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11, 219–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial optimization by iterative partial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)

    Article  Google Scholar 

  • Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyanski, L.: Determining computational complexity for characteristic phase transitions. Nature 400, 133–137 (1998)

    Google Scholar 

  • Richter, D.: Toleranzen in Helsgauns Lin-Kernighan-Heuristik für das TSP. Diploma Thesis, University of Halle-Wittenberg, Germany (2006)

  • Richter, D., Goldengorin, B., Jäger, G., Molitor, P.: Improving the efficiency of Helsgaun’s Lin-Kernighan heuristic for the symmetric TSP. In: Janssen, J., Pralat, P. (eds.) CAAN 2007, Lecture Notes in Computer Science, pp. 99–111. Springer, Berlin (2007)

    Google Scholar 

  • Schilham, R.M.F.: Commonalities in Local Search. Ph.D. Thesis, Technische Universiteit Eindhoven, The Netherlands (2001)

  • Slaney, J.K., Walsh, T.: The backbones in optimization and approximation. Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-01), pp. 254–259. Kaufmann Publishers, San Francisco (2001)

  • Tamaki, H.: Alternating cycles contribution: a tour merging strategy for the traveling salesman problem. Research Report MPI-I-2003-1-007, Max-Planck-Institut für Informatik, Saarbrücken, Germany (2003)

  • Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma, G.: Tolerance-based branch and bound algorithms for the ATSP. Eur. J. Oper. Res. 189(3), 775–788 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Walshaw, C.: A multilevel approach to the traveling salesman problem. Oper. Res. 50(5), 862–877 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, W., Looks, M.: A novel local search Algorithm for the traveling salesman problem that exploits backbones. In Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 343–350 (2005)

Download references

Acknowledgments

This work was supported by German Research Foundation (DFG) with the Grant Number MO 645/7-3. Boris Goldengorin’s research was partially supported by the Exchange Visitor Program Number: P-1-01285 at Center for Applied Optimization (CAO), University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Goldengorin.

Additional information

A preliminary version of this paper appeared in the proceedings of the 5th International Conference on Algorithmic Aspects in Information and Management (AAIM), San Francisco, USA, June 15–17, 2009, Lecture Notes in Computer Science, 5564, pp. 175–187.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (gz 1464379 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, G., Dong, C., Goldengorin, B. et al. A backbone based TSP heuristic for large instances. J Heuristics 20, 107–124 (2014). https://doi.org/10.1007/s10732-013-9233-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-013-9233-y

Keywords

Navigation