Advertisement

Journal of Heuristics

, Volume 19, Issue 2, pp 233–252 | Cite as

A two-pheromone trail ant colony system—tabu search approach for the heterogeneous vehicle routing problem with time windows and multiple products

  • Jair J. De la Cruz
  • Carlos D. Paternina-Arboleda
  • Victor Cantillo
  • Jairo R. Montoya-Torres
Article

Abstract

This paper considers a practical variant of the Vehicle Routing Problem (VRP) known as the Heterogeneous Vehicle Routing Problem with Time Windows and Multiple Products (HVRPTWMP). As the problem is NP-hard, the resolution approach proposed here is a sequential Ant Colony System (ACS)—Tabu Search algorithm. The approach introduces a two pheromone trail strategy to accelerate agents’ (ants) learning process. Its convergence to good solutions is given in terms of fleet size and travel time while completing tours and service to all customers. The proposed procedure uses regency and frequency memories form Tabu Search to further improve the quality of solutions. Experiments are carried out using instances from literature and show the effectiveness of this procedure.

Keywords

Vehicle routing Multiple products Time windows Ant colony Tabu search Sequential algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, N., Taniguchi, E.: Travel time reliability in vehicle routing and scheduling with time windows. Netw. Spat. Econ. 6(3–4), 293–311 (2006) MathSciNetMATHCrossRefGoogle Scholar
  2. Barbarosoglu, G., Ozgur, D.: A Tabu Search algorithm for the vehicle routing problem. Comput. Oper. Res. 26, 255–270 (1999) MathSciNetMATHCrossRefGoogle Scholar
  3. Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inform. 18(1), 41–48 (2004) CrossRefGoogle Scholar
  4. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrollini, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with stochastic demand. J. Math. Model. Algorithms 5(1), 91–110 (2006) MathSciNetMATHCrossRefGoogle Scholar
  5. Bramel, J., Simchi-Levi, D.: A location based heuristic for general routing problems. Oper. Res. 43, 649–660 (1995) MathSciNetMATHCrossRefGoogle Scholar
  6. Braysy, O., Dullaert, W., Gendreau, M.: Evolutionary algorithms for the vehicle routing problem with time windows. J. Heuristics 10(6), 587–611 (2004) CrossRefGoogle Scholar
  7. Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the ant system to the vehicle routing problem. In: Proceedings of the 2nd International Conference on Metaheuristics (1997) Google Scholar
  8. Bullnheimer, B., Hartl, R., Strauss, C.: An improved ant system algorithm for the vehicle routing problem. Ann. Oper. Res. 89, 319–328 (1999) MathSciNetMATHCrossRefGoogle Scholar
  9. Doerner, K.F., Hartl, R.F., Benker, S., Lucka, M.: Ant colony system for a VRP with multiple time windows and multiple visits. Parallel Process. Lett. 16(3), 351–369 (2006) MathSciNetCrossRefGoogle Scholar
  10. Dondo, C., Mendez, C., Cerda, J.: An optimal approach to the multiple-depot heterogeneous VRPTW and capacity constraints. Lat. Am. Appl. Res. 33, 129–134 (2003) Google Scholar
  11. Dorigo, M., Gambardella, L.: Ant colonies for the traveling salesman problem. Biosystems 43, 73–81 (1997) CrossRefGoogle Scholar
  12. Favaretto, D., Moretti, E., Pellegrini, P.: Ant colony system for a VRP with multiple time windows and multiple visits. J. Interdiscip. Math. 10, 263–284 (2007) MATHGoogle Scholar
  13. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks 11, 109–124 (1981) MathSciNetCrossRefGoogle Scholar
  14. Gajpal, Y., Abad, P.: An ant colony system (ACS) for vehicle routing problem with simultaneous delivery and pickup. Comput. Oper. Res. 36(12), 3215–3223 (2009) MATHCrossRefGoogle Scholar
  15. Gambardella, L., Dorigo, M.: Ant-Q: A reinforcement learning approach to the traveling salesman problem. In: Proceedings of International Conference on Machine Learning (ML-95), pp. 252–260 (1995) Google Scholar
  16. Gambardella, L., Taillard, E., Agazzi, G.: MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. IDSIA Technical Report. Lugano, 17 p (1999) Google Scholar
  17. Gendreau, M., Hertz, A., Laporte, G.: A Tabu Search heuristic for the vehicle routing problem. Manag. Sci. 40, 1276–1290 (1994) MATHCrossRefGoogle Scholar
  18. Glover, F., Laguna, M.: Tabu Search. Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific, Oxford (1993) Google Scholar
  19. Golden, B., Raghavan, S., Wasil, E. (eds.): The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, Berlin (2008) MATHGoogle Scholar
  20. Homberger, J., Gehring, H.: Two evolutionary metaheuristics for the Vehicle Routing Problem with Time Windows. Inf. Syst. Oper. Res. 3(3), 297–318 (1999) Google Scholar
  21. Hung, K.S., Su, S.F., Lee, Z.J.: Improving ant colony optimization algorithms for solving traveling salesman problems. J. Adv. Comput. Intell. Intell. Informa. 11, 433–442 (2007) Google Scholar
  22. Landrieu, A., Mati, Y., Binder, Z.: A Tabu Search heuristic for the single vehicle pickup and delivery problem with time windows. J. Intell. Manuf. 12(5–6), 497–508 (2001) CrossRefGoogle Scholar
  23. Laporte, G.: What you should know about the Vehicle Routing Problem. Nav. Res. Logist. 54, 811–819 (2007) MathSciNetMATHCrossRefGoogle Scholar
  24. Laporte, G., Semet, F.: The vehicle routing problem. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2002) Google Scholar
  25. Lau, H.C., Sim, M., Teo, K.M.: Vehicle routing problem with time windows and a limited number of vehicles. Eur. J. Oper. Res. 148, 559–569 (2003) MathSciNetMATHCrossRefGoogle Scholar
  26. Liu, F.S., Shen, S.-Y.: A method for Vehicle Routing Problem with multiple vehicle types and time windows. Proc. Natl. Sci. Counc., Repub. China 23(4), 526–536 (1999) Google Scholar
  27. Nanry, W., Barnes, W.: Solving the pickup and delivery problem with time windows using reactive Tabu Search. Transp. Res., Part B, Methodol. 34, 107–121 (2000) CrossRefGoogle Scholar
  28. Osman, I.H., Christofides, N.: Simulated annealing and descent algorithms for capacitated clustering problem. Research Report, Imperial College, University of London. Presented at EURO-X conference Beograd, Yugoslavia (1989) Google Scholar
  29. Pellegrini, P., Favaretto, D., Moretti, E.: Multiple ant colony optimization for a rich vehicle routing problem: a case study. In: Proceedings of the International Conference on Knowledge-based Intelligent Information and Engineering Systems. Lecture Notes in Computer Science, vol. 4693, pp. 627–634 (2007) CrossRefGoogle Scholar
  30. Prins, C.: A Simple and Effective Evolutionary Algorithm for the Vehicle Routing Problem. Comput. Oper. Res. 31, 1985–2002 (2004) MathSciNetMATHCrossRefGoogle Scholar
  31. Ralphs, T.K., Kopman, L., Pulleyblank, W.R., Trotter, L.E.: On the capacitated vehicle routing problem. Math. Program., Ser. B 94, 343–359 (2000) MathSciNetCrossRefGoogle Scholar
  32. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1, 147–167 (1995) MATHCrossRefGoogle Scholar
  33. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Principle and Practice of Constraint Programming—CP98, Pisa, Italy, October 1998. LNCS. Springer, Berlin (1998) Google Scholar
  34. Solomon, M.: VRPTW benchmark problems, optimal solutions and best known solutions. web.cba.neu.edu/~msolomon/problems.htm. Last update: 24 March 2005
  35. Sprenger, R., Mönch, L.: An ant colony optimization approach to solve cooperative transportation planning problems. In: Proceedings of the 2009 Winter Simulation Conference, pp. 2488–2495 (2009) CrossRefGoogle Scholar
  36. Tan, K.C., Lee, L.H., Zhu, K.: Heuristic methods for vehicle routing with time windows. Artif. Intell. Eng. 15, 281–295 (2001) CrossRefGoogle Scholar
  37. Tan, X., Luo, X., Chen, W.N., Zhang, J.: Ant colony system for optimizing vehicle routing problem with time windows. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, pp. 209–214 (2005) Google Scholar
  38. Tan, X., Zhuo, X.L., Zhang, J.: Ant colony system for optimizing Vehicle Routing Problem with Time Windows (VRPTW). In: Computational Intelligence and Bioinformatics. Lecture Notes in Computer Science, vol. 4115, pp. 33–38 (2006) CrossRefGoogle Scholar
  39. Thangiah, S.R.: Vehicle routing with time windows using genetic algorithms. In: Chambers, L. (ed.) Application Handbook of Genetic Algorithms: New Frontiers, vol. II, pp. 253–277. CRC Press, Boca Raton (1995) Google Scholar
  40. Thangiah, S.R., Osman, I., Vinayagamoorthy, R., Sun, T.: Algorithms for vehicle routing with time deadlines. Am. J. Math. Manag. Sci. 13(3–4), 323–355 (1994). Special issue: Vehicle Routing 2000: Advances in Time Windows, Optimality, Fast Bounds and Multi-Depot Routing Google Scholar
  41. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2002) MATHCrossRefGoogle Scholar
  42. Tripathi, M., Kuriger, G., Wan, H.: An ant based simulation optimization for vehicle routing problem with stochastic demands. In: Proceedings of the 2009 Winter Simulation Conference, pp. 2476–2487 (2009) CrossRefGoogle Scholar
  43. Watkins, C., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jair J. De la Cruz
    • 1
  • Carlos D. Paternina-Arboleda
    • 2
  • Victor Cantillo
    • 3
  • Jairo R. Montoya-Torres
    • 4
  1. 1.Department of Industrial EngineeringUniversidad del NorteBarranquillaColombia
  2. 2.Escuela de NegociosUniversidad del NorteBarranquillaColombia
  3. 3.Department of Civil and Environmental EngineeringUniversidad del NorteBarranquillaColombia
  4. 4.Escuela de Ciencias Económicas y AdministrativasUniversidad de La SabanaChiaColombia

Personalised recommendations