Advertisement

Journal of Heuristics

, Volume 18, Issue 1, pp 1–23 | Cite as

A hybrid metaheuristic approach to the university course timetabling problem

  • Salwani Abdullah
  • Hamza Turabieh
  • Barry McCollum
  • Paul McMullan
Open Access
Article

Abstract

This paper describes the development of a novel metaheuristic that combines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the University course timetabling problem. This well-known timetabling problem assigns lectures to specific numbers of timeslots and rooms maximizing the overall quality of the timetable while taking various constraints into account. EM is a population-based stochastic global optimization algorithm that is based on the theory of physics, simulating attraction and repulsion of sample points in moving toward optimality. GD is a local search procedure that allows worse solutions to be accepted based on some given upper boundary or ‘level’. In this paper, the dynamic force calculated from the attraction-repulsion mechanism is used as a decreasing rate to update the ‘level’ within the search process. The proposed method has been applied to a range of benchmark university course timetabling test problems from the literature. Moreover, the viability of the method has been tested by comparing its results with other reported results from the literature, demonstrating that the method is able to produce improved solutions to those currently published. We believe this is due to the combination of both approaches and the ability of the resultant algorithm to converge all solutions at every search process.

Keywords

Dynamic force decay rate Great deluge algorithm Electromagnetism-like mechanism Course timetabling 

References

  1. Abdullah, S., Burke, E.K.: A multi-start large neighborhood search approach with local search methods for examination timetabling. In: The International Conference on Automated Planning and Scheduling (ICAPS 2006), pp. 334–337 (2006) Google Scholar
  2. Abdullah, S., Turabieh, H.: Generating university course timetable using genetic algorithm and local search. In: Proceeding of the 3rd International Conference on Hybrid Information Technology, pp. 254–260 (2008) Google Scholar
  3. Abdullah, S., Burke, E.K., McCollum, B.: An investigation of variable neighborhood search for university course timetabling. In: The 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA), pp. 413–427 (2005) Google Scholar
  4. Abdullah, S., Burke, E.K., McCollum, B.: Using a randomized iterative improvement algorithm with composite neighborhood structures for university course timetabling. In: Metaheuristics: Progress in Complex Systems Optimisation. Operations Research / Computer Science Interfaces Series. Springer, Berlin (2007a). Chap. 8. ISBN: 978-0-387-71919-1 Google Scholar
  5. Abdullah, S., Burke, E.K., McCollum, B.: A hybrid evolutionary approach to the university course timetabling problem. In: IEEE Congress on Evolutionary Computation, pp. 1764–1768 (2007b). ISBN: 1-4244-1340-0 CrossRefGoogle Scholar
  6. Asmuni, H., Burke, E.K., Garibaldi, J.M.: Fuzzy multiple heuristic ordering for course timetabling. In: The Proceedings of the 5th United Kingdom Workshop on Computational Intelligence (UKCI05), London, UK, pp. 302–309 (2005) Google Scholar
  7. Atsuta, M., Nonobe, K., Ibaraki, T.: ITC-2007 Track2: An Approach using General CSP Solver (2007). http://www.cs.qub.ac.uk/itc2007/winner/bestcoursesolutions/Atsuta_et_al.pdf
  8. Bardadym, VA: Computer-aided school and university timetabling: A new wave. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling V. LNCS, vol. 1153, pp. 22–45. Springer, Berlin (1996) Google Scholar
  9. Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25, 263–282 (2003) MathSciNetMATHCrossRefGoogle Scholar
  10. Burke, E.K., Newall, J.P.: Enhancing timetable solutions with local search methods. In: Burke, E.K., De Causmaecker, P. (eds.) Selected Papers from 4th International Conference on the Practice and Theory of Automated Timetabling. LNCS, vol. 2740, pp. 195–206. Springer, Berlin (2003) CrossRefGoogle Scholar
  11. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling. Eur. J. Oper. Res. 140(2), 266–280 (2002) MATHCrossRefGoogle Scholar
  12. Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination timetabling in British universities—A survey. In: Burke, E.K., Ross, P. (eds.) Selected Papers from 1st International Conference on the Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 76–92 (1996) Google Scholar
  13. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for timetabling and rostering. J. Heuristics 9(6), 451–470 (2003) CrossRefGoogle Scholar
  14. Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for timetabling problems. Eur. J. Oper. Res. 176, 177–192 (2007) MathSciNetMATHCrossRefGoogle Scholar
  15. Burke, E.K., Marecek, J., Parkes, A., Rudová, H.: Decomposition, reformulation, and diving in university course timetabling. Comput. Oper. Res. 37(3), 582–597 (2009) CrossRefGoogle Scholar
  16. Carter, M.W.: A survey of practical applications of examination timetabling algorithms. Oper. Res. 34(2), 193–202 (1986) MathSciNetCrossRefGoogle Scholar
  17. Carter, M.W., Laporte, G.: Recent developments in practical examination timetabling. In: Burke, E.K., Ross, P. (eds.) LNCS, vol. 1153, pp. 373–383 (1996) Google Scholar
  18. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid algorithm for university course timetabling. J. Sched. 9(5), 403–432 (2006) MathSciNetMATHCrossRefGoogle Scholar
  19. Clark, M., Henz, M., Love, B.: QuikFix. A repair-based timetable solver. In: Proceedings of the Seventh PATAT Conference (2008). http://www.comp.nus.edu.sg/~henz/publications/ps/PATAT2008.pdf Google Scholar
  20. De Cesco, F., Di Gaspero, L., Schaerf, A.: Benchmarking curriculum-based course timetabling: Formulations, data formats, instances, validation, and results. In: Proceedings of the Seventh PATAT Conference (2008). http://tabu.diegm.uniud.it/ctt/DDS2008.pdf Google Scholar
  21. de Werra, D.: An introduction to timetabling. Eur. J. Oper. Res. 19(2), 151–162 (1985) MATHCrossRefGoogle Scholar
  22. Debels, D., Vanhoucke, M.: An electromagnetism meta-heuristic for the resource-constrained project scheduling problem. In: LNCS, vol. 3871, pp. 259–270. Springer, Berlin (2006) Google Scholar
  23. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. Eur. J. Oper. Res. 169(2), 638–653 (2006) MATHCrossRefGoogle Scholar
  24. Di Gaspero, L., Schaerf, A., McCollum, B.: The Second International Timetabling Competition (ICT-2007) Curriculum-based Course Timetabling (Track 3) (2007). http://pst.istc.cnr.it/ssc-at-icaps-07/papers/digaspero-et-al-SSC07.pdf
  25. Dueck, G.: New Optimization Heuristics. The great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104, 86–92 (1993) MATHCrossRefGoogle Scholar
  26. Geiger, M.J.: An application of the threshold accepting metaheuristic for curriculum based course timetabling. In: Proceedings of the Seventh PATAT Conference (2008). arXiv:0809.0757v1 Google Scholar
  27. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimisation by simulated annealing. Science 220, 671–380 (1983) MathSciNetMATHCrossRefGoogle Scholar
  28. Lach, G., Lübbecke, M.E.: Curriculum based course timetabling: Optimal solutions to the Udine benchmark instances. In: Proceedings of the Seventh PATAT Conference (2008). http://www.math.tu-berlin.de/luebbeck/papers/udine.pdf Google Scholar
  29. Landa-Silva, D., Obit, J.H.: Great deluge with non-linear decay rate for solving course timetabling problem. In: The Fourth International IEEE Conference on Intelligent Systems, Varna, Bulgaria, pp. 11–18 (2008) Google Scholar
  30. Lü, Z., Hao, J.-K.: Adaptive Tabu Search for course timetabling. Eur. J. Oper. Res. 200(1), 235–244 (2010) MATHCrossRefGoogle Scholar
  31. Maenhout, B., Vanhoucke, M.: An electromagnetic meta-heuristic for the nurse scheduling problem. J. Heuristics 13, 315–401 (2007) CrossRefGoogle Scholar
  32. McCollum, B.: A perspective on bridging the gap between theory and practice in university timetabling. In: LNCS, vol. 3867, pp. 3–23. Springer, Berlin (2007) Google Scholar
  33. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A., Di Gaspero, L., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS J. Comput. 22(1), 120–130 (2010) CrossRefGoogle Scholar
  34. McMullan, P.: An extended implementation of the great deluge algorithm for course timetabling. In: Computational Science—ICCS, Part I. LNCS, vol. 4487, pp. 538–545. Springer, Berlin (2007) Google Scholar
  35. McMullan, P., McCollum, B.: Dynamic job scheduling on the grid environment using the great deluge algorithm. In: The 9th International Conference on Parallel Computing Technologies. LNCS, vol. 4671, pp. 283–292. Springer, Berlin (2007) Google Scholar
  36. Müller, T., ITC2007: Solver description. In: Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling (2007). http://www.unitime.org/papers/itc2007.pdf Google Scholar
  37. Müller, T., ITC2007 solver description: a hybrid approach. Ann. Oper. Res. 172(1), 429–446 (2009) MATHCrossRefGoogle Scholar
  38. Petrovic, S., Burke, E.K.: University timetabling. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Boca Raton (2004). Chap. 45 Google Scholar
  39. Petrovic, S., Yang, Y., Dror, M.: Case-based selection of initialisation heuristics for metaheuristic examination timetabling. Expert Syst. Appl. 33(3), 772–785 (2007) CrossRefGoogle Scholar
  40. Rossi-Doria, O., Samples, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella, L.M., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L., Stützle, T.: A comparison of the performance of different meta-heuristics on the timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.) The Practice and Theory of Automated Timetabling IV: Selected Papers from 4th International Conference on the Practice and Theory of Automated Timetabling (PATAT IV), Gent, Belgium. LNCS, vol. 2740, pp. 329–354. Springer, Berlin (2003) Google Scholar
  41. Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87–127 (1999) CrossRefGoogle Scholar
  42. Socha, K., Knowles, J., Samples, M.: A max-min ant system for the university course timetabling problem. In: The Proceedings of the 3rd International Workshop on Ant Algorithms (ANTS 2002). LNCS, vol. 2463, pp. 1–13. Springer, Berlin (2002) Google Scholar
  43. Turabieh, H., Abdullah, S., McCollum, B.: Electromagnetism-like mechanism with force decay rate great deluge for the course timetabling problem. In: The Fourth International Conference on Rough Set and Knowledge Technology (RSKT 2009). LNAI, vol. 5589, pp. 497–504. Springer, Berlin (2009) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Salwani Abdullah
    • 1
  • Hamza Turabieh
    • 1
  • Barry McCollum
    • 2
  • Paul McMullan
    • 2
  1. 1.Data Mining and Optimisation Research Group, Center for Artificial Intelligence TechnologyUniversity Kebangsaan MalaysiaBangiMalaysia
  2. 2.Department of Computer ScienceQueen’s University BelfastBelfastUK

Personalised recommendations