Journal of Heuristics

, Volume 17, Issue 1, pp 61–96 | Cite as

On the asymptotic behavior of subtour-patching heuristics in solving the TSP on permuted Monge matrices

  • Vladimir G. Deĭneko
  • Dvir Shabtay
  • George Steiner


We examine the performance of different subtour-patching heuristics for solving the strongly \(\mathcal{NP}\)-hard traveling salesman problem (TSP) on permuted Monge matrices. We prove that a well-known heuristic is asymptotically optimal for the TSP on product matrices and k-root cost matrices. We also show that the heuristic is provably asymptotically optimal for general permuted Monge matrices under some mild conditions. Our theoretical results are strongly supported by the findings of a large-scale experimental study on randomly generated numerical examples, which show that the heuristic is not only asymptotically optimal, but also finds optimal TSP tours with high probability that increases with the problem size. Thus the heuristic represents a practical tool to solve large instances of the problem.


Traveling salesman problem Subtour-patching heuristic Strongly \(\mathcal{NP}\)-hard Asymptotically optimal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aneja, Y.P., Kamoun, H.: Scheduling of parts and robot activities in a two-machine robotic cell. Comput. Oper. Res. 26, 297–312 (1999) MATHCrossRefGoogle Scholar
  2. Arora, R.K., Rana, S.P.: Scheduling in a semi-ordered flow shop without intermediate queues. AIIE Trans. 12, 263–272 (1980) MathSciNetGoogle Scholar
  3. Burdyuk, R.E., Trofimov, V.N.: Generalization of the results of Gilmore and Gomory on the solution of the traveling salesman problem. Cybernetics 14, 12–18 (1976) MathSciNetGoogle Scholar
  4. Burkard, R.E., Klinz, B., Rudolf, R.: Prespectives of Monge properties in optimization. Discrete Appl. Math. 70, 95–161 (1996) MATHCrossRefMathSciNetGoogle Scholar
  5. Burkard, R.E., Deĭneko, G.V., Van Dal, R., Van Der Veen, J.A.A., Woeginger, J.: Well-solvable special cases of the traveling salesman problem: a survey. SIAM Rev. 40(3), 496–546 (1998) MATHCrossRefMathSciNetGoogle Scholar
  6. Danilovich, I.S., Deĭneko, V.G.: On the estimation of accuracy of an approximaton algorithm, metody resheniya nelinejnych zadach i obrabotki dannych. Dnepropetrovsk, 84–85 (1983). (In Russian) Google Scholar
  7. Deĭneko, V.G., Filonenko, V.L.: On the reconstruction of specially structured matrices, aktualnyje problemy EVM i programmirovanije. Dnepropetrovsk, DGU (1979). (In Russian) Google Scholar
  8. Deĭneko, V.G., Steiner, G., Xue, Z.: Robotic-cell scheduling: special polynomially solvable cases of the traveling salesman problem on permuted Monge matrices. J. Comb. Optim. 9, 381–399 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. Ferreira, J.V., Guimares, R.C.: A traveling salesman problem for sequencing of duties on bus crew rotas. J. Oper. Res. Soc 46, 415–426 (1995) Google Scholar
  10. Gilmore, P.C., Gomory, R.E.: A solvable case of the traveling salesman problem. Oper. Res. 12, 655–679 (1964) MATHCrossRefMathSciNetGoogle Scholar
  11. Gilmore, P.C., Lawler, E.L., Shmoys, D.B.: Well-solved special cases of the traveling salesman problem. In: Lawler, J.K., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem. Wiley, New York (1985). Chap. 4 Google Scholar
  12. Hallin, M., Melard, G., Milhaud, X.: Permutational extreme values of autocorrelation coefficients and a Pitman test against serial dependence. Ann. Stat. 20, 523–534 (1992) MATHCrossRefMathSciNetGoogle Scholar
  13. Hoffman, A.J.: On simple linear programming problems. In: Klee, V. (ed.) Proc. of Symposia in Pure Mathematics, Convexity, vol. VII, pp. 317–327. AMS, Providence (1963) Google Scholar
  14. Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., Zverovich, A.: Experimental analysis of heuristics for the ATSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variations, pp. 445–487. Kluwer Academic, Dordrecht (2002) Google Scholar
  15. Kalczynski, P.J., Kamburowski, J.: Two-machine stochastic flow shops with blocking and the traveling salesman problem. J. Sched. 8, 529–536 (2005) MATHCrossRefMathSciNetGoogle Scholar
  16. Lawler, J.K., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem. Wiley, New York (1985) MATHGoogle Scholar
  17. Miller, D.L., Pekny, J.P.: Exact solution of large asymmetric traveling salesman problems. Science 251, 754–761 (1991) CrossRefGoogle Scholar
  18. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs (1982) MATHGoogle Scholar
  19. Park, J.K.: A special case of the n-vertex traveling salesman problem that can be solved in o(n) time. Inf. Process. Lett. 40, 247–254 (1991) MATHCrossRefGoogle Scholar
  20. Plante, R.D., Lowe, T.J., Chandrasekaran, R.: The product matrix traveling salesman problem: an application and solution heuristic. Oper. Res. 35(5), 772–783 (1987) MATHCrossRefMathSciNetGoogle Scholar
  21. Reddi, S.S., Ramamoorthy, C.V.: On the flowshop sequencing problem with no-wait in process. J. Oper. Res. Soc. 23, 323–331 (1972) MATHCrossRefGoogle Scholar
  22. Sarvanov, V.I.: Approximate solution of the problem of minimization of a linear form on the set of cyclic permutations. Inz. Akad. Nauk. BSSR, Ser. Fiz.-Mat, Nauk 6, 5–10 (1977). (In Russian) MathSciNetGoogle Scholar
  23. Sarvanov, V.I.: On the complexity of minimizing a linear form on a set of cyclic permutations. Sov. Math. Dokl. 22, 118–120 (1980) MATHGoogle Scholar
  24. Sethi, S.P., Sriskandarajah, C., Soeger, J., Balzewicz, J., Kubial, W.: Sequencing of parts and robot moves in a robotic cell. Int. J. Flex. Manuf. Syst. 4, 331–358 (1992) CrossRefGoogle Scholar
  25. Shabtay, D., Kaspi, M., Steiner, G.: The no-wait two-machine flow-shop scheduling problem with convex resource-dependent processing times. IIE Trans. 39, 539–557 (2007) CrossRefGoogle Scholar
  26. Szwarc, W.: The approximate solution of the traveling salesman problem. Mathematica (RPR) 1, 183–191 (1961) Google Scholar
  27. Van Acken, G.A., Molenkamp, J.B., Van Dal, R.: Simple patch: a new heuristic for the product traveling salesman. Report 93-85, Technical University of Delft, Faculty of Technical Mathematics, The Netherlands (1993) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vladimir G. Deĭneko
    • 1
  • Dvir Shabtay
    • 2
  • George Steiner
    • 3
  1. 1.Warwick Business SchoolThe University of WarwickCoventryUK
  2. 2.Department of Industrial Engineering and ManagementBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Operations Management Area, Michael G. DeGroote School of BusinessMcMaster UniversityHamiltonCanada

Personalised recommendations