Journal of Heuristics

, Volume 13, Issue 4, pp 359–385 | Cite as

An electromagnetic meta-heuristic for the nurse scheduling problem



In this paper, we present a novel meta-heuristic technique for the nurse scheduling problem (NSP). This well-known scheduling problem assigns nurses to shifts per day maximizing the overall quality of the roster while taking various constraints into account. The problem is known to be NP-hard.

Due to its complexity and relevance, many algorithms have been developed to solve practical and often case-specific models of the NSP. The huge variety of constraints and the several objective function possibilities have led to exact and meta-heuristic procedures in various guises, and hence comparison and state-of-the-art reporting of standard results seem to be a utopian idea.

We present a meta-heuristic procedure for the NSP based on the framework proposed by Birbil and Fang (J. Glob. Opt. 25, 263–282, 2003). The Electromagnetic (EM) approach is based on the theory of physics, and simulates attraction and repulsion of sample points in order to move towards a promising solution. Moreover, we present computational experiments on a standard benchmark dataset, and solve problem instances under different assumptions. We show that the proposed procedure performs consistently well under many different circumstances, and hence, can be considered as robust against case-specific constraints.


Electromagnetic meta-heuristic Local search Nurse scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, R., Ergun, Ö., Orlin, J., Punnen, A.: A survey of very large-scale neighborhood search techniques. Discret. Appl. Math. 123, 75–102 (2002) MATHCrossRefMathSciNetGoogle Scholar
  2. Aickelin, U.: Genetic algorithms for multiple-choice optimisation problems. PhD thesis, European Business Management School, University of Swansea, 1999 Google Scholar
  3. Aickelin, U., Dowsland, K.: Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. J. Sched. 3, 139–153 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. Aickelin, U., Dowsland, K.: An indirect genetic algorithm for a nurse scheduling problem. Comput. Oper. Res. 31, 761–778 (2004) MATHCrossRefGoogle Scholar
  5. Aickelin, U., White, P.: Building better nurse scheduling algorithms. Ann. Oper. Res. 128, 159–177 (2004) MATHCrossRefGoogle Scholar
  6. Arthur, J., Ravindran, A.: A multiple objective nurse scheduling model. AIIE Trans. 1, 55–60 (1981) Google Scholar
  7. Bard, J., Purnomo, H.: Preference scheduling for nurses using column generation. Eur. J. Oper. Res. 164, 510–534 (2005a) MATHCrossRefGoogle Scholar
  8. Bard, J., Purnomo, H.: Hospital-wide reactive scheduling of nurses with preference considerations. IIE Trans. 37, 589–608 (2005b) CrossRefGoogle Scholar
  9. Beasley, J., Chu, P.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res. 94, 392–404 (1996) MATHCrossRefGoogle Scholar
  10. Berrada, I., Ferland, J., Michelon, P.: A multi-objective approach to nurse scheduling with both hard and soft constraints. Socio-Econ. Plan. Sci. 30, 183–193 (1996) CrossRefGoogle Scholar
  11. Birbil, I., Fang, S.C.: An electro-magnetism-like mechanism for global optimization. J. Glob. Optim. 25, 263–282 (2003) MATHCrossRefMathSciNetGoogle Scholar
  12. Birbil, I., Fang, S.C., Sheu, R.: On the convergence of a population based global optimization algorithm. J. Glob. Optim. 30, 301–318 (2004) MATHCrossRefMathSciNetGoogle Scholar
  13. Blau, R., Sear, A.: Nurse scheduling with a micro-computer. J. Ambul. Care Manag. 6, 1–13 (1983) Google Scholar
  14. Burke, E.K., Cowling, P., De Causmacker, P., Vanden Berghe, G.: A memetic approach to the nurse rostering problem. Appl. Intell. 3, 199–214 (2001a) CrossRefGoogle Scholar
  15. Burke, E.K., Cowling, P., De Causmacker, P., Vanden Berghe, G.: Fitness evaluation for nurse scheduling problems. In: Proceedings of Congress on Evolutionary Computation, CEC2001, pp. 1139–1146. IEEE Press, Seoul (2001b) Google Scholar
  16. Burke, E.K., De Causmacker, P., Petrovic, S., Vanden Berghe, G.: A multi criteria metaheuristic approach to nurse rostering. In: Proceedings of Congress on Evolutionary Computation, CEC2002, pp. 1197–2002. IEEE Press, Honolulu (2002) CrossRefGoogle Scholar
  17. Burke, E.K., De Causmacker, P., Petrovic, S., Vanden Berghe, G.: Variable neighbourhood search for nurse rostering problems. In: Metaheuristics: Computer Decision-Making, pp. 153–172. Kluwer, Norwell (2004a) Google Scholar
  18. Burke, E.K., De Causmacker, P., Vanden Berghe, G., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7, 441–499 (2004b) CrossRefMATHMathSciNetGoogle Scholar
  19. Caron, G., Hansen, P., Jaumard, B.: The assignment problem with seniority and job priority constraints. Oper. Res. 3, 449–453 (1999) MathSciNetGoogle Scholar
  20. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems—a bibliographic survey. Eur. J. Oper. Res. 151, 447–460 (2003) MATHCrossRefMathSciNetGoogle Scholar
  21. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. Eur. J. Oper. Res. 169, 638–653 (2006) MATHCrossRefGoogle Scholar
  22. Debels, D., Vanhoucke, M.: An electromagnetism meta-heuristic for the resource-constrained project scheduling problem. In: Lecture Notes in Computer Science, vol. 3871, pp. 259–270. Springer, New York (2006) Google Scholar
  23. De Causmaecker, P., Vanden Berghe, G.: Relaxation of coverage constraints in hospital personnel rostering. In: Lecture Notes in Computer Science, vol. 2740, pp. 129–147. Springer, New York (2003) Google Scholar
  24. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959) MATHCrossRefMathSciNetGoogle Scholar
  25. Dowsland, K.: Nurse scheduling with Tabu search and strategic oscillation. Eur. J. Oper. Res. 106, pp. 393–407 (1998) MATHCrossRefGoogle Scholar
  26. Dowsland, K., Thompson, J.: Solving a nurse scheduling problem with knapsacks, networks and tabu search. J. Oper. Res. Soc. 51, 825–833 (2000) MATHCrossRefGoogle Scholar
  27. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28, 652–673 (1998) MATHCrossRefMathSciNetGoogle Scholar
  28. Gutjahr, W., Rauner, M.: An ACO algorithm for a dynamic nurse scheduling problem in Austria. Comput. Oper. Res. 34, 642–666 (2007) MATHCrossRefGoogle Scholar
  29. Hansen, P., Mladenović, N.: Variable neighbourhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001) MATHCrossRefGoogle Scholar
  30. Jaszkiewicz, A.: A metaheuristic approach to multiple objective nurse scheduling. Found. Comput. Decis. Sci. 22, 169–184 (1997) MATHGoogle Scholar
  31. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: An update. Eur. J. Oper. Res. 174, 23–37 (2006) MATHCrossRefGoogle Scholar
  32. Kuhn, H.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2, 83–97 (1955) CrossRefMathSciNetGoogle Scholar
  33. Li, J., Aickelin, U.: A bayesian optimization algorithm for the nurse scheduling problem. In: Proceedings of 2003 Congress on Evolutionary Computation (CEC2003), pp. 2149–2156. (2003) Google Scholar
  34. Martins, E., Pascoal, M.: A new implementation of Yen’s ranking loopless paths algorithm. Q. J. Belg. Fr. Italian Oper. Res. Soc. 1, 121–134 (2003) MATHMathSciNetGoogle Scholar
  35. Millar, H., Kiragu, M.: Cyclic and non-cyclic scheduling of 12h shift nurses by network programming. Eur. J. Oper. Res. 104, 582–592 (1998) MATHCrossRefGoogle Scholar
  36. Miller, H., Pierskalla, W., Rath, G.: Nurse scheduling using mathematical programming. Oper. Res. 24, 857–870 (1976) MATHGoogle Scholar
  37. Osogami, T., Imai, H.: Classification of various neighbourhood operations for the nurse scheduling problem. In: Lecture Notes in Computer Science, vol. 1969, pp. 72–83. Springer, New York (2000), Google Scholar
  38. Schrage, L.: LINDO: Optimization Software for Linear Programming. LINDO Systems, Chicago (1995) Google Scholar
  39. Vanhoucke, M., Maenhout, B.: Characterisation and generation of nurse scheduling problem instances. Characterisation and generation of nurse scheduling problem instances. Working paper 05/339, Ghent University (2005) Google Scholar
  40. Warner, M.: Scheduling nursing personnel according to nursing preference: A mathematical approach. Oper. Res. 24, 842–856 (1976) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Faculty of Economics and Business AdministrationGhent UniversityGentBelgium
  2. 2.Operations & Technology Management CentreVlerick Leuven Gent Management SchoolGentBelgium

Personalised recommendations