Table 7 Cluster-based decomposition in large instances 6-10

From: Home care vehicle routing problem with chargeable overtime and strict and soft preference matching

Instance Input Overall output
(roverall) Γ k η #subp %sol OF mM mF OVT TT CT Gapmax
6 (0.676) I(3) I(1) 1 3 23% 72000980.75 10 133 28 43.75 7 0.0%
  I(3) II(15) 1 1 0% 0 0 0 0 0 0 0.0%
  II(16) II(5) 1 7 100% 1182004367.75 166 623 125 111.75 1366 2.8⋅ 10− 6%
  I(3) I(1) 0.9 3 23% 72000980.75 10 133 28 43.75 7 0.0%
  I(3) II(15) 0.9 1 0% 0 0 0 0 0 0 0.0%
7 (0.682) I(3) I(1) 1 3 100% 862005444.75 117 740 150 128.75 3326 8.4⋅ 10− 1%
  II(14) I(1) 1 6 97% 1337004115 188 549 82 153.5 2413 2.0⋅ 10− 5%
  I(3) II(11) 1 2 22% 64001180.5 8 169 4 14.5 19 0.0%
  II(14) II(5) 1 5 100% 971005054.75 130 695 95 106.75 2639 1.3⋅ 10− 5%
  I(3) I(1) 0.9 3 37% 231001873.75 30 252 19 44.75 3013 6.4⋅ 10− 6%
  I(3) II(11) 0.9 2 22% 64001180.5 8 169 4 14.5 20 0.0%
8 (0.744) I(2) I(1) 1 2 21% 15001188.25 3 166 11 31.25 20 0.0%
  I(2) II(13) 1 2 0% 0 0 0 0 0 0 0.0%
  I(2) I(1) 0.9 2 18% 15001413.5 3 180 17 19.5 13 0.0%
  I(2) II(13) 0.9 2 12% 56000733.5 7 95 4 13.5 2 0.0%
9 (0.770) I(2) I(1) 1 2 10% 925 0 116 0 5 5 0.0%
  I(2) II(13) 1 2 5% 457.5 0 56 0 1.5 1 0.0%
  I(2) I(1) 0.9 2 16% 248001153 34 151 4 17 20 0.0%
  I(2) II(13) 0.9 2 19% 528001104 76 151 16 28 26 0.0%
10 (0.850) I(2) I(1) 1 2 10% 84000478.75 11 54 16 22.75 2 0.0%
  I(2) II(17) 1 1 0% 0 0 0 0 0 0 0.0%
  I(2) I(1) 0.9 2 8% 64000715.75 9 86 0 11.75 1 0.0%
  I(2) II(17) 0.9 2 6% 60000440 9 57 0 12 1 0.0%
  1. The table has the same structure of Table 4