Advertisement

Health Care Management Science

, Volume 11, Issue 2, pp 147–151 | Cite as

Improving the quality of the coding of primary diagnosis in standardized discharge summaries

  • Paul Avillach
  • Michel Joubert
  • Marius Fieschi
Article

Abstract

We propose to design and test an information-processing model to participate in appraising the quality and the consistency of the coding, for billing, of Standardized Discharge Summaries (SDSs). We designed a model using both symbolic knowledge extracted from the NLM’s UMLS and statistical knowledge. The aim is to retrieve from the ICD-10 terms recorded in a SDS the Principal Diagnosis (PD) at the time of coding. In 90% of cases the PD was retrieved 1st or 2nd in SDS including three ICD-10 codes or more. This model could contribute as part of an automated quality control process in a hospital information system by checking consistency in coded SDSs and improve the income of the hospital.

Keywords

Discharge summary Medical record Hospital Quality improvement 

Notes

Acknowledgments

We wish to thank Dr Christian Trapé who helped us perform the mapping between CCAM and ICD-10. Mrs Marthe-Aline Jutand and Dr Roch Giorgi for their well-informed advice on statistics. Dr Philip Robinson for help with manuscript preparation. The US. NLM which kindly provided the authors with the UMLS knowledge sources.

References

  1. 1.
    Le programme de médicalisation des systèmes d'information. [cited 2007 march 9th]; Available from: http://www.atih.sante.fr/
  2. 2.
    Henderson T Fau-Shepheard J, Shepheard J Fau-Sundararajan V, Sundararajan V. Quality of diagnosis and procedure coding in ICD-10 administrative data. (0025-7079 (Print))Google Scholar
  3. 3.
    Vergnon P, Morgon E, Dargent S, Benyamine D, Favre M, Perrot L et al (1998) Quality assessment of the medical information on the standardized discharge summary. Rev Epidemiol Sante Publique 46(1):24–33Google Scholar
  4. 4.
    Rao P, Andrei A, Fried A, Gonzalez D, Shine D (2005) Assessing Quality and Efficiency of Discharge Summaries. Am J Med Qual 20(6):337–343, November 1CrossRefGoogle Scholar
  5. 5.
    Occena Lg Fau-Huang LJ, Huang LJ. Facilitating discharge summary preparation in small hospitals. (1043-1721 (Print))Google Scholar
  6. 6.
    Crosswhite R, Beckham SH, Gray P, Hawkins PR, Hughes J (1997) Using a multidisciplinary automated discharge summary process to improve information management across the system. Am J Manag Care 3(3):473–479, MarGoogle Scholar
  7. 7.
    Joubert M, Peretti A, Darmoni S, Dahamna B, Fieschi M (2006) Contribution to an automated indexing of French-language health web sites. Proc AMIA Symp 409–13Google Scholar
  8. 8.
    World Health Organization. International Classification of Diseases, 10th revision. [cited 2007 march 9th]; Available from: http://www.who.int/classifications/icd/en/
  9. 9.
    Classification Commune des Actes Médicaux. [cited 2007 march 9th]; Available from: http://www.ccam.sante.fr/
  10. 10.
    Lindberg DA, Humphreys BL, McCray AT (1993) The Unified Medical Language System. Methods Inf Med 32(4):281–291, AugGoogle Scholar
  11. 11.
    McCray AT, Nelson SJ (1995) The representation of meaning in the UMLS. Methods Inf Med 34(1–2):193–201, MarGoogle Scholar
  12. 12.
    Joubert M, Peretti AL, Darmoni S, Dahamna B, Fieschi M (2006) Contribution to an Automated Indexing of French-language Health Web Sites. AMIA Annu Symp Proc 409–413Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul Avillach
    • 1
    • 2
    • 3
    • 4
  • Michel Joubert
    • 1
  • Marius Fieschi
    • 1
  1. 1.LERTIM, Faculté de MédecineUniversité de la MéditerranéeMarseille Cedex 5France
  2. 2.Laboratoire d’Epidémiologie, Statistique et Informatique Médicales (LESIM), INSERM U593, ISPEDUniversité Victor Segalen Bordeaux 2Bordeaux cedexFrance
  3. 3.Service d’information médicaleCentre Hospitalier Universitaire de BordeauxBordeaux cedexFrance
  4. 4.ISPED—Université Victor Segalen Bordeaux 2Bordeaux Cedex-Case 11France

Personalised recommendations