Strigolactone inhibits hydrogen peroxide and plasma membrane H+-ATPase activities to downregulate adventitious root formation in mung bean hypocotyls

Abstract

Strigolactones regulate root development and are known to inhibit adventitious root formation. However, the hormonal targets of strigolactones during adventitious rooting are yet to be determined. As a signal molecule, H2O2 stimulates adventitious rooting. On the other hand, plasma membrane H+-ATPase is involved in several hormonal signals that are linked to root development. This study evaluated the influence of a synthetic strigolactone (rac-GR24), H2O2, and plasma membrane H+-ATPase on adventitious root formation in mung bean hypocotyls. We also determined if H2O2 and plasma membrane H+-ATPases are possible hormonal targets in strigolactone-mediated inhibition of adventitious rooting. The results confirm the inhibitory role of strigolactones and the enhancing influence of H2O2 on adventitious rooting while also suggesting that plasma membrane H+-ATPase activity is necessary and may be employed to regulate adventitious rooting. Also, rac-GR24 diminished endogenous H2O2 content by inhibiting NOX and SOD activities while also inhibiting plasma membrane H+-ATPase activity. Therefore, we conclude that interference with H2O2 signaling and plasma membrane H+-ATPase activity may serve as a potent hormonal mechanism that may be employed by strigolactones to downregulate adventitious rooting in mung bean hypocotyls.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Baunsgaard L, Fuglsang AT, Jahn T, Korthout H, Palmgren M (1998) The 14-3-3 proteins associate with the plant plasma membrane H (+)-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J 13:661–671

    CAS  Article  Google Scholar 

  2. da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:133

    Article  Google Scholar 

  3. Druege U, Franken P, Hajirezaei MR (2016) Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci 7:381

    Article  Google Scholar 

  4. Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei MR (2019) Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Ann Bot 123:929–949

    CAS  Article  Google Scholar 

  5. Elavarthi S, Martin B (2010) Spectrophotometric assays for antioxidant enzymes in plants. In: Sunkar R (ed) Plant stress tolerance: methods and protocols. Springer, New York, pp 273–280

    Google Scholar 

  6. Falhof J, Pedersen JT, Fuglsang AT, Palmgren M (2016) Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant 9:323–337

    CAS  Article  Google Scholar 

  7. Guan L, Tayengwa R, Cheng Z, Peer WA, Murphy AS, Zhao M (2019) Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biol 19:435

    Article  Google Scholar 

  8. Hohm T, Demarsy E, Quan C, Allenbach Petrolati L, Preuten T, Vernoux T, Bergmann S, Fankhauser C (2014) Plasma membrane H+-ATPase regulation is required for auxin gradient formation preceding phototropic growth. Mol Syst Biol 10:751–751

    Article  Google Scholar 

  9. Junglee S, Urban L, Huguette S, Lopez F (2014) Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am J Anal Chem 5:730–736

    CAS  Article  Google Scholar 

  10. Kim H, Cha H-C (2015) Effect of gibberellin on the adventitious root formation from the leaves-derived calli in Persicaria perfoliata. J Life Sci 25:390–396

    Article  Google Scholar 

  11. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    CAS  Article  Google Scholar 

  12. Li S-W, Xue L (2010) The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings. In Vitro Cell Dev Biol Plant 46:142–148

    CAS  Article  Google Scholar 

  13. Li S, Xue L, Xu S, Feng H, An L (2007) Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul 52:173–180

    CAS  Article  Google Scholar 

  14. Li S-W, Xue L, Xu S, Feng H, An L (2009) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63–71

    CAS  Article  Google Scholar 

  15. Li X-P, Xu Q-Q, Liao W-B, Ma Z-J, Xu X-T, Wang M, Ren P-J, Niu L-J, Jin X, Zhu Y-C (2016) Hydrogen peroxide is involved in abscisic acid-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. J Plant Biol 59:536–548

    CAS  Article  Google Scholar 

  16. Liao W, Huang G, Yu J, Zhang M, Shi X (2011) Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. J Hortic Sci Biotechnol 86:159–165

    CAS  Article  Google Scholar 

  17. Lin C, Sauter M (2019) Polar auxin transport determines adventitious root emergence and growth in rice. Front Plant Sci 10:444

    Article  Google Scholar 

  18. Lischweski S, Muchow A, Guthörl D, Hause B (2015) Jasmonates act positively in adventitious root formation in petunia cuttings. BMC Plant Biol 15:229–229

    Article  Google Scholar 

  19. Lv S, Zhang Y, Li C, Liu Z, Yang N, Pan L, Wu J, Wang J, Yang J, Lv Y, Zhang Y, Jiang W, She X, Wang G (2018) Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol 217:290–304

    CAS  Article  Google Scholar 

  20. Małgorzata J, Wdowikowska A, Klobus G (2018) Assay of plasma membrane H+-ATPase in plant tissues under abiotic stresses. In: Mock H-P, Matros A, Witzel K (eds) Plant membrane proteomics: methods and protocols, vol 1696. Humana Press, New York, pp 205–215

    Google Scholar 

  21. Mao J, Zhang D, Meng Y, Li K, Wang H, Han M (2019) Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its suppression of adventitious root primordia formation. Physiol Plant 166:663–676

    CAS  Article  Google Scholar 

  22. Marre E (1979) Fusicoccin: a tool in plant physiology. Annu Rev Plant Physiol 30:273–288

    CAS  Article  Google Scholar 

  23. Niu S, Li Z, Yuan H, Fang P, Chen X, Li W (2013) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64:3411–3424

    CAS  Article  Google Scholar 

  24. Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J (2019) Strigolactones and their crosstalk with other phytohormones. Ann Bot 124:749–767

    CAS  Article  Google Scholar 

  25. Pine L, Hoffman PS, Malcolm GB, Benson RF, Keen MG (1984) Determination of catalase, peroxidase, and superoxide dismutase within the genus Legionella. J Clin Microbiol 20:421–429

    CAS  Article  Google Scholar 

  26. Rasmussen A, Beveridge CA, Geelen D (2012a) Inhibition of strigolactones promotes adventitious root formation. Plant Signal Behav 7:694–697

    CAS  Article  Google Scholar 

  27. Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012b) Strigolactones suppress adventitious rooting in arabidopsis and pea. Plant Physiol 158:1976

    CAS  Article  Google Scholar 

  28. Saby John K, Bhat SG, Prasada Rao UJS (2011) Isolation and partial characterization of phenol oxidases from Mangifera indica L. sap (latex). J Mol Catal 68:30–36

    CAS  Article  Google Scholar 

  29. Sarath G, Hou G, Baird LM, Mitchell RB (2007) Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4-grasses. Planta 226:697–708

    CAS  Article  Google Scholar 

  30. Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214

    CAS  Article  Google Scholar 

  31. Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617

    CAS  Article  Google Scholar 

  32. Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2- synthase from other NAD(P)H oxidoreductases. Plant Physiol 115:543–550

    Article  Google Scholar 

  33. Wei K, Wang L-Y, Ruan L, Zhang C-C, Wu L-Y, Li H-L, Cheng H (2018) Endogenous nitric oxide and hydrogen peroxide detection in indole-3-butyric acid-induced adventitious root formation in Camellia sinensis. J Integr Agric 17:2273–2280

    CAS  Article  Google Scholar 

  34. Xie X, Yoneyama K, Kisugi T, Nomura T, Akiyama K, Asami T, Yoneyama K (2015) Strigolactones are transported from roots to shoots, although not through the xylem. J Pestic Sci 40:214–216

    CAS  Article  Google Scholar 

  35. Xu M, Zhu L, Shou H, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674–1681

    CAS  Article  Google Scholar 

  36. Yang W, Zhu C, Ma X, Li G, Gan L, Ng D, Xia K (2013) Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings. PLoS ONE 8:e84580

    Article  Google Scholar 

  37. Zhang Y, Lv S, Wang G (2018) Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal Behav 13:e1444322

    Article  Google Scholar 

  38. Zhang J, Wei J, Li D, Kong X, Rengel Z, Chen L, Yang Y, Cui X, Chen Q (2017) The role of the plasma membrane H+-ATPase in plant responses to aluminum toxicity. Front Plant Sci 8:1757

    Article  Google Scholar 

  39. Zhang Y, Za X, Zhan C, Liu M, Xia W, Wang N (2019) Comprehensive analysis of dynamic gene expression and investigation of the roles of hydrogen peroxide during adventitious rooting in poplar. BMC Plant Biol 19:99

    CAS  Article  Google Scholar 

  40. Zwanenburg B, Pospíšil T, Ćavar Zeljković S (2016) Strigolactones: new plant hormones in action. Planta 243:1311–1326

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Dr. Tomáš Pospíšil of the Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic, for providing the rac-GR24 used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. van Staden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Pramod Kumar Nagar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omoarelojie, L.O., Kulkarni, M.G., Finnie, J.F. et al. Strigolactone inhibits hydrogen peroxide and plasma membrane H+-ATPase activities to downregulate adventitious root formation in mung bean hypocotyls. Plant Growth Regul (2021). https://doi.org/10.1007/s10725-021-00691-y

Download citation

Keywords

  • Adventitious root formation
  • rac-GR24
  • NOX
  • SOD
  • Hydrogen peroxide
  • Plasma membrane H+-ATPase
  • Strigolactones