Functional analysis of the UVR8 photoreceptor from the monocotyledonous Zea mays

Abstract

Low UV-B fluence is a signaling stimulus that regulates various physiological processes and induces photomorphogenic responses in plants. The specific UV-B receptor UVR8 is a key component in these processes. Although UVR8 sequence is conserved, few homologs have been cloned and reported to be functional. Here we show the cloning and functional analysis of Zea mays UVR8 (ZmUVR8). ZmUVR8 presents 73% of identity with AtUVR8, maintaining the key tryptophan responsible of UV-B perception. ZmUVR8 also contains the VP domain, involved in the interaction with the proteins CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1). Whereas UVR8 was expressed in non-irradiated Arabidopsis and maize leaves, after 2 h of UV-B irradiation, its expression was reduced. The expression of chalcone synthase (CHS), involved in flavonoid biosynthesis and regulated by UVR8, was increased in irradiated Arabidopsis and maize leaves. Arabidopsis uvr8-1 null mutant was complemented with ZmUVR8 driven by the CaMV-35S promoter and fused to eGFP. ZmUVR8-eGFP fusion was mainly localized in nuclei of transgenic lines, irrespective of UV-B treatments. UV-B suppressed hypocotyl elongation in wild type (WT) Arabidopsis plants, whereas in uvr8-1 hypocotyl growth was observed. However, hypocotyl elongation was reduced in UV-B irradiated transgenic lines complemented with ZmUVR8. Moreover, CHS and transcription factor HY5 (ELONGATED HYPOCOTYL 5) expression were also restored in these plants. These results confirm that ZmUVR8 is similar enough to AtUVR8 to restore UV-B perception and signaling in Arabidopsis mutant uvr8-1, thus being a functional UV-B photoreceptor. That reinforce the importance of UVR8 as a functional UV-B-responsive regulator in land plants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Brosché M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10

    Article  Google Scholar 

  2. Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102:18225–18230. https://doi.org/10.1073/pnas.0507187102

    CAS  Article  PubMed  Google Scholar 

  3. Casati P, Walbot V (2004) Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biol 5:R16. https://doi.org/10.1186/gb-2004-5-3-r16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Casati P, Campi M, Morrow DJ, Fernandes JF, Walbot V (2011) Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize. BMC Genomics 12:321. https://doi.org/10.1186/1471-2164-12-321

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Casati P, Morrow DJ, Fernandes JF, Walbot V (2011) Rapid maize leaf and immature ear responses to UV-B radiation. Front Plant Sci 2:33. https://doi.org/10.3389/fpls.2011.00033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Christie JM et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496. https://doi.org/10.1126/science.1218091

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Cloix C et al (2012) C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc Natl Acad Sci USA 109:16366–16370. https://doi.org/10.1073/pnas.1210898109

    Article  PubMed  Google Scholar 

  8. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  Article  Google Scholar 

  9. Cnossen I, Sanz-Forcada J, Favata F, Witasse O, Zegers T, Arnold NF (2007) Habitat of early life: solar X-ray and UV radiation at earth’s surface 4–3.5 billion years ago. Geophys Res Lett 112:E2

    Article  Google Scholar 

  10. Favory JJ et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601. https://doi.org/10.1038/emboj.2009.4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Fernandez MB, Tossi V, Lamattina L, Cassia R (2016) A comprehensive phylogeny reveals functional conservation of the UV-B photoreceptor UVR8 from green algae to higher plants. Front Plant Sci 7:1698. https://doi.org/10.3389/fpls.2016.01698

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fina J, Casadevall R, AbdElgaward H, Prinsen E, Markakis MN, Beemster GTS, Casati P (2017) UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels. Plant Physiol 174:1110–1126. https://doi.org/10.1104/pp.17.00365

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428. https://doi.org/10.1104/pp.103.030049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Gao W, Zheng Y, Slusser JR, Heisler GM, Grant RH, Xu J, He D (2004) Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: a field experiment. Photochem Photobiol 80:127–131. https://doi.org/10.1562/2004-05-03-RA-156.1

    CAS  Article  PubMed  Google Scholar 

  15. Han X, Chang X, Zhang Z, Chen H, He H, Zhong B, Deng XW (2019) Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. Mol Plant 12:847–862. https://doi.org/10.1016/j.molp.2019.04.006

    CAS  Article  PubMed  Google Scholar 

  16. Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237. https://doi.org/10.1016/j.tplants.2012.01.007

    CAS  Article  PubMed  Google Scholar 

  17. Heilmann M, Jenkins GI (2013) Rapid reversion from monomer to dimer regenerates the ultraviolet-B photoreceptor UV RESISTANCE LOCUS8 in intact Arabidopsis plants. Plant Physiol 161:547–555. https://doi.org/10.1104/pp.112.206805

    CAS  Article  PubMed  Google Scholar 

  18. Huang X, Yang P, Ouyang X, Chen L, Deng XW (2014) Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis. PLoS Genet 10:e1004218. https://doi.org/10.1371/journal.pgen.1004218

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Jenkins GI (2014) The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26:21–37. https://doi.org/10.1105/tpc.113.119446

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot 22:98–138

    Google Scholar 

  21. Kaiserli E, Jenkins GI (2007) UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19:2662–2673. https://doi.org/10.1105/tpc.107.053330

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    CAS  Article  Google Scholar 

  23. Khudyakova AY et al (2019) Impact of UV-B radiation on the photosystem II activity, pro-/antioxidant balance and expression of light-activated genes in Arabidopsis thaliana hy4 mutants grown under light of different spectral composition. J Photochem Photobiol B 194:14–20. https://doi.org/10.1016/j.jphotobiol.2019.02.003

    CAS  Article  PubMed  Google Scholar 

  24. Kim BC, Tennessen DJ, Last RL (1998) UV-B-induced photomorphogenesis in Arabidopsis thaliana. Plant J 15:667–674

    CAS  Article  Google Scholar 

  25. Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol 130:234–243. https://doi.org/10.1104/pp.005041

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric gene carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    CAS  Article  Google Scholar 

  27. Kondou Y et al (2019) Physiological function of photoreceptor UVR8 in UV-B tolerance in the liverwort Marchantia polymorpha. Planta 249:1349–1364. https://doi.org/10.1007/s00425-019-03090-w

    CAS  Article  PubMed  Google Scholar 

  28. Li H et al (2018) Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep 8:6097. https://doi.org/10.1038/s41598-018-24309-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Li X et al (2018) Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response. Plant Sci 274:294–308. https://doi.org/10.1016/j.plantsci.2018.06.006

    CAS  Article  PubMed  Google Scholar 

  30. Liu L, Gregan S, Winefield C, Jordan B (2014) From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ 38:905–919. https://doi.org/10.1111/pce.12349

    CAS  Article  PubMed  Google Scholar 

  31. Llewellyn CA, Airs RL (2010) Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar Drugs 8:1273–1291. https://doi.org/10.3390/md8041273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Mao K, Wang L, Li YY, Wu R (2015) Molecular cloning and functional analysis of UV RESISTANCE LOCUS 8 (PeUVR8) from Populus euphratica. PLoS ONE 10:e0132390. https://doi.org/10.1371/journal.pone.0132390

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Nicholas KB, Nicholas HBJ (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments

  34. O’Hara A, Jenkins GI (2012) In vivo function of tryptophans in the Arabidopsis UV-B photoreceptor UVR8. Plant Cell 24:3755–3766. https://doi.org/10.1105/tpc.112.101451

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Pearson WR (2014) An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi0301s42

    Article  Google Scholar 

  36. Rajhi I et al (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. N Phytol 190:351–368. https://doi.org/10.1111/j.1469-8137.2010.03535.x

    CAS  Article  Google Scholar 

  37. Rastogi RP, Incharoensakdi A (2013) UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551. Plant Physiol Biochem 70:7–13. https://doi.org/10.1016/j.plaphy.2013.04.021

    CAS  Article  PubMed  Google Scholar 

  38. Razeghi J, Kianianmomeni A (2019) UV-B response is modulated by cell-type specific signaling pathway in multicellular green algae Volvox carteri. Plant Growth Regul 87:303–315. https://doi.org/10.1007/s10725-018-0472-7

    CAS  Article  Google Scholar 

  39. Ren H et al (2019) Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1816268116

    Article  PubMed  Google Scholar 

  40. Rius SP, Emiliani J, Casati P (2016) P1 epigenetic regulation in leaves of high altitude maize landraces: effect of UV-B radiation. Front Plant Sci 7:523. https://doi.org/10.3389/fpls.2016.00523

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rizzini L et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106. https://doi.org/10.1126/science.1200660

    CAS  Article  PubMed  Google Scholar 

  42. Rozema J et al (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B 66:2–12

    CAS  Article  Google Scholar 

  43. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45. https://doi.org/10.1093/nar/gkp045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Singh VP et al (2015) Role of salicylic acid-seed priming in the regulation of chromium(VI) and UV-B toxicity in maize seedlings. Plant Growth Regul 78:79–91. https://doi.org/10.1007/s10725-015-0076-4

    CAS  Article  Google Scholar 

  45. Soriano G, Cloix C, Heilmann M, Nunez-Olivera E, Martinez-Abaigar J, Jenkins GI (2018) Evolutionary conservation of structure and function of the UVR8 photoreceptor from the liverwort Marchantia polymorpha and the moss Physcomitrella patens. N Phytol 217:151–162. https://doi.org/10.1111/nph.14767

    CAS  Article  Google Scholar 

  46. Strable J, Scanlon MJ (2009) Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.emo132

    Article  PubMed  Google Scholar 

  47. Sun K, Zhu Z (2018) Illuminating the nucleus: UVR8 interacts with more. Trends Plant Sci 23:279–281. https://doi.org/10.1016/j.tplants.2018.03.002

    CAS  Article  PubMed  Google Scholar 

  48. Thomas TTD, Puthur JT (2020) UV-B priming enhances specific secondary metabolites in Oryza sativa (L.) empowering to encounter diverse abiotic stresses. Plant Growth Regul. https://doi.org/10.1007/s10725-020-00628-x

    Article  Google Scholar 

  49. Tilbrook K et al (2016) UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell. https://doi.org/10.1105/tpc.15.00287

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tilbrook K, Arongaus AB, Binkert M, Heijde M, Yin R, Ulm R (2013) The UVR8 UV-B photoreceptor: perception, signaling and response. Arabidopsis Book 11:e0164. https://doi.org/10.1199/tab.0164

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ulm R, Jenkins GI (2015) Q&A: how do plants sense and respond to UV-B radiation? BMC Biol 13:45. https://doi.org/10.1186/s12915-015-0156-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Vladimir D et al (2020) Linking sensitivity of photosystem II to UV-B with chloroplast ultrastructure and UV-B absorbing pigments contents in A. thaliana L. phyAphyB double mutants. Plant Growth Regul 91:13–21. https://doi.org/10.1007/s10725-020-00584-6

    CAS  Article  Google Scholar 

  53. Wu D et al (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219

    Article  Google Scholar 

  54. Wu Q, Su N, Zhang X, Liu Y, Cui J, Liang Y (2016) Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Sci Rep 6:29164. https://doi.org/10.1038/srep29164

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Yang Y et al (2018) UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat Plants 4:98–107. https://doi.org/10.1038/s41477-017-0099-0

    CAS  Article  PubMed  Google Scholar 

  56. Yang X, Montano S, Ren Z (2016) How does photoreceptor UVR8 perceive a UV-B signal? Photochem Photobiol 91:993–1003

    Article  Google Scholar 

  57. Yin R (2017) Cooling down thermomorphogenesis by UV-B signaling. Trends Plant Sci 22:447–449. https://doi.org/10.1016/j.tplants.2017.04.003

    CAS  Article  PubMed  Google Scholar 

  58. Yin R, Ulm R (2017) How plants cope with UV-B: from perception to response. Curr Opin Plant Bio l7:42–48

    CAS  Article  Google Scholar 

  59. Yin R, Skvortsova MY, Loubery S, Ulm R (2016) COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc Natl Acad Sci USA 113:E4415–E4422. https://doi.org/10.1073/pnas.1607074113

    CAS  Article  PubMed  Google Scholar 

  60. Yonekura-Sakakibara K, Higashi Y, Nakabayashi R (2019) The origin and evolution of plant flavonoid metabolism. Front Plant Sci 10:943. https://doi.org/10.3389/fpls.2019.00943

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zeng X et al (2015) Dynamic crystallography reveals early signalling events in ultraviolet photoreceptor UVR8. Nat Plants. https://doi.org/10.1038/nplants.2014.6

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhao C, Mao K, You CX, Zhao XY, Wang SH, Li YY, Hao YJ (2016) Molecular cloning and functional analysis of a UV-B photoreceptor gene, MdUVR8 (UV Resistance Locus 8), from apple. Plant Sci 247:115–126. https://doi.org/10.1016/j.plantsci.2016.03.006

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Rius from CEFOBI Institute for technical support with maize samples.

Funding

This study was funded by the Agencia Nacional de Promoción de Ciencia y Técnica (ANPCYT) Grant Number 3589, and Universidad Nacional de Mar del Plata Grant Number EXA 818/17. LL and RC are Permanent Researcher of CONICET Argentina. MBF has Post-doctoral Fellowship of Comisión de Investigaciones Científicas (CIC).

Author information

Affiliations

Authors

Contributions

MF conducted experiments, interpreted data, drew figures, and collaborated in writing the manuscript. RC conceived the project and wrote the paper. LL supervised and improved the manuscript.

Corresponding author

Correspondence to Raúl Cassia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1275 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández, M.B., Lamattina, L. & Cassia, R. Functional analysis of the UVR8 photoreceptor from the monocotyledonous Zea mays. Plant Growth Regul (2020). https://doi.org/10.1007/s10725-020-00639-8

Download citation

Keywords

  • UVR8
  • UV-B
  • Maize
  • Monocotyledonous
  • Arabidopsis