Advertisement

Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil

  • Shuo Sun
  • Xiaofang Zhou
  • Xiaoying Cui
  • Chuanping Liu
  • Yingxu Fan
  • Murray B. McBride
  • Yingwen Li
  • Zhian LiEmail author
  • Ping ZhuangEmail author
Original Paper
  • 200 Downloads

Abstract

Phytoextraction assisted by plant growth regulators (PGRs) is gaining popularity in phytoremediation applications. A pot experiment was conducted to compare the effects of foliar applications of 11 PGRs, including Indole-3-acetic acid (IAA), Indole-3-butyric acid (IBA), diethyl aminoethyl hexanoate (DA-6), 6-Benzylaminopurine (6-BA), 1-naphthylacetic acid (NAA), Abscisic acid (ABA), 2,4-Dichlorophenoxyacetic acid (2,4-D), Ethrel (ETH), Brassinolide (BR), Gibberellin (GA3), and Compound sodium nitrophenolate (CSN) on plant development, chlorophyll content, antioxidant enzyme activities, Cd phytoextraction capacity and micro-distribution of Amaranthus hypochondriacus L. grown in Cd contaminated soil. The effect on biomass yield was dependent on the PGRs type, with IBA being the most efficient. The addition of PGRs increased Cd extraction efficiency, with their effect decreasing in the order: IAA > DA-6 > IBA > 2,4-D > 6-BA > NAA > BR > CSN > ETH > GA3 > ABA. Application of PGRs increased Cd concentrations in leaves and stems but reduction was found in roots (except for 2,4-D). Exogenous PGRs increased the activities of stress ameliorating enzymes (SOD and CAT) and led to a reduction in MDA (malondialdehyde) concentration. In leaves, scanning electron microscope-Energy dispersive spectrometer (SEM–EDS) confirmed that application of IBA or DA-6 further fixed more Cd in upper and lower epidermal cells, which might relate to more Cd migration from roots to shoots in Amaranthus hypochondriacus L. These findings suggest that the treatment with IBA or DA-6 appears to be optimal for enhancing the phytoextraction efficiency of Amaranthus hypochondriacus L. in Cd contaminated soil.

Keywords

Plant growth regulators Amaranthus hypochondriacus L. Cadmium Antioxidant enzymes Micro-area distribution Phytoextraction efficiency 

Notes

Acknowledgements

This research was financially supported by the National Key Technologies R&D Program of China (2015BAD05B05), the National Natural Science Foundation of China (31670513), the Science and Technology Program of Guangdong, China (2018B030324003 and 2016A020221023), National Key R&D Program of China (2016YFD0800704), Special Program for Key Basic Research and Cultivation Project of Guangdong, China (2015A030308015), Program of Bureau of Science and Information Technology of Guangzhou Municipality (201903010022).

Author contributions

PZ and ZL designed the study; SS, XZ and XC carried out the experiments; YF and YL contributed reagents/materials/analysis tools; SS analyzed the data and wrote the manuscript; and MM and CL contributed to language modification.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10725_2019_548_MOESM1_ESM.docx (349 kb)
Supplementary material 1 (DOCX 348 kb)

References

  1. Aderholt M, Vogelien DL, Koether M, Greipsson S (2017) Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Chemosphere 175:85–96PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahmad B, Jaleel H, Sadiq Y, Khan MM, Shabbir A (2018) Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul 86(2):273–286CrossRefGoogle Scholar
  3. Allison LE (1976) Organic carbon. In: Black CA (ed) Methods of soil analysis: part 2. chemical and microbiological properties. American Society of Agronomy, Madison, pp 1367–1378Google Scholar
  4. Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic and Professional, LondonCrossRefGoogle Scholar
  5. Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bali S, Kaur P, Kohli SK, Ohri P, Thukral AK, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Sci Total Environ 645:1344–1360PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barbafieri M, Tassi E (2011) Brassinosteroids for phytoremediation application. In: Hayat ES, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Berlin, pp 403–437CrossRefGoogle Scholar
  8. Bulak P, Walkiewicz A, Brzezińska M (2014) Plant growth regulators-assisted phytoextraction. Biol Plant 58:1–8CrossRefGoogle Scholar
  9. Caregnato FF, Koller CE, MacFarlane GR, Moreira JCF (2008) The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk) Vierh. Mar Pollut Bull 56:1119–1127PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chen B, Luo S, Wu YJ, Ye JY, Wang Q, Xu XM, Pan FS, Khan KY, Feng Y, Yang XE (2017) The effects of the endophytic bacterium pseudomonas fluorescens sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front Microbiol 8:2538PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen L, Wang D, Long C, Cui ZX (2019) Effect of plant growth regulations on phytoremediation of uranium and cadmium contaminated soil by Zebrina pendula schnizl. Fresenius Environ Bull 28(2A):1434–1442Google Scholar
  13. Faessler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80(8):901–907CrossRefGoogle Scholar
  14. Fuentes HD, Khoo CS, Pe T, Muir S, Khan AG (2000) Phytoremediation of a contaminated mine site using plant growth regulators to increase heavy metal uptake. In: Proceedings of the 5th international conference on clean technologies for the mining industry, pp 427–435Google Scholar
  15. George EF, Hall MA, Klerk GJD (2008) Plant growth regulators I: introduction; auxins, their analogues and inhibitors. Plant propagation by tissue culture. Springer, Dordrecht, pp 175–204Google Scholar
  16. Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133(2):365–371PubMedCrossRefPubMedCentralGoogle Scholar
  17. Guan MY, Zhang HH, Pan W, Jin CW, Lin XY (2018) Sulfide alleviates cadmium toxicity in Arabidopsis plants by altering the chemical form and the subcellular distribution of cadmium. Sci Total Environ 627:663–670PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hadi F, Bano A, Fuller MP (2010) The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere 80(4):457–462PubMedCrossRefPubMedCentralGoogle Scholar
  19. He S, Wu Q, He Z (2014) Synergetic effects of DA-6/GA3 with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne. Chemosphere 117:132–138PubMedCrossRefGoogle Scholar
  20. He SJ, Hu YJ, Wang HB, Wang HJ, Li QC (2017) Effects of indole-3-acetic acid on arsenic uptake ad antioxidative enzymes in Pteris cretica var. nervosa and Pteris ensiformis. Int J Phytoremed 19(3):231–238CrossRefGoogle Scholar
  21. He SY, Guo HH, He ZL, Wang L (2019) Effects of a new-type cleaning agent and a plant growth regulator on phytoextraction of cadmium from a contaminated soil. Pedosphere 29(2):161–169CrossRefGoogle Scholar
  22. Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu JF (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator potentilla griffithii. Environ Exp Bot 66(2):317–325CrossRefGoogle Scholar
  23. Kumar PB, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction-the use of plants to remove heavy-metals from soils. Environ Sci Technol 29(5):1232–1238PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kupper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119(1):305–311PubMedCentralCrossRefGoogle Scholar
  25. Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212(1):75–84PubMedCrossRefPubMedCentralGoogle Scholar
  26. Li NY, Fu QL, Zhuang P, Zou B, Guo B, Li ZA (2012a) Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. Int J Phytorem 14(2):162–173CrossRefGoogle Scholar
  27. Li JT, Baker AJM, Ye ZH, Wang HB, Shu WS (2012b) Phytoextraction of Cd-contaminated soils: current status and future challenges. Crit Rev Environ Sci Technol 42(20):2113–2152PubMedPubMedCentralCrossRefGoogle Scholar
  28. Li ZY, Ma ZW, Kuijp TJVD, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853PubMedCrossRefPubMedCentralGoogle Scholar
  29. Li ZW, Zhang RS, Zhang HM (2018) Effects of plant growth regulators (DA-6 and 6-BA) and EDDS chelator on phytoextraction and detoxification of cadmium by Amaranthus hybridus Linn. Int J Phytorem 20(11):1121–1128CrossRefGoogle Scholar
  30. Liphadzi MS, Kirkham MB, Paulsen GM (2006) Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol 27(6):695–704PubMedCrossRefPubMedCentralGoogle Scholar
  31. Liu W, Shu WS, Lan CY (2004) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull 49(1):29–32CrossRefGoogle Scholar
  32. Liu L, Ma QQ, Lin LJ, Tang Y, Wang J, Lv XL, Liao MA, Xia H, Chen SX, Li JH, Wang X, Lai YS, Liang D (2017) Effects of exogenous abscisic acid on cadmium accumulation in two ecotypes of hyperaccumulator Bidens pilosa. Environ Prog Sustain Energy 36(6):1643–1649CrossRefGoogle Scholar
  33. Long C, Wang D, Chen L, Jiang WJ, Xiang MW (2017) Effect of four kinds of phytohormones on U and Cd accumulation in Helianthus annuus. Chin J Environ Eng 11(5):3251–3256 (in Chinese) Google Scholar
  34. López ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promotor. Chemosphere 61(4):595–598PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lu HP, Li ZA, Wu JT, Shen Y, Li YW, Zou B, Tao YT, Zhuang P (2017) Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. Sci Rep 7:40583PubMedPubMedCentralCrossRefGoogle Scholar
  36. MAPRC (Ministry of Agriculture of the People’s Republic of China) (2017) Determination of chlorophyll content in fruits, vegetables and derived products—Spectrophotometry method (NY/T 3082-2017). MAPRC, Beijing (in Chinese) Google Scholar
  37. Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58(1):47–59CrossRefGoogle Scholar
  38. Okem A, Kulkarni MG, Staden JV (2015) Enhancing phytoremediation potential of Pennisetum clandestinum Hochst in cadmium-contaminated coil using smoke-water and smoke-isolated karrikinolide. Int J Phytorem 17(11):1046–1052CrossRefGoogle Scholar
  39. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126CrossRefGoogle Scholar
  40. Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zylkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52(1):52–65PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ramakrishna B, Rao SSR (2012) 24-Epibrassinolide alleviated zinc induced oxidative stress in radish (Rap-hanus sativus L.) seedlings by enhancing anti-oxidative system. Plant Growth Regul 68:249–259CrossRefGoogle Scholar
  42. Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130(4):1815–1826PubMedPubMedCentralCrossRefGoogle Scholar
  43. Sattar MA, Paasivirta J (1980) Fate of chlorophenoxyacetic acids in acid soil. Chemosphere 9:745CrossRefGoogle Scholar
  44. Shahzad B, Tanveera M, Zhao C, Rehman A, Cheema SA, Sharma A, Song H, Rehman SU, Dong ZR (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Saf 147:935–944PubMedCrossRefGoogle Scholar
  45. Sharma I, Pati PK, Bhardwaj R (2011) Effect of 2,4-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol Plant 33(5):1723–1735CrossRefGoogle Scholar
  46. Shi WG, Liu WZ, Yu WJ, Zhang YH, Ding S, Li H, Mark T, Kraigher H, Luo ZB (2019) Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. J Hazard Mater 362:275–285PubMedCrossRefPubMedCentralGoogle Scholar
  47. Singh S, Prasad SM (2015) IAA alleviates Cd toxicity on growth, photosynthesis and oxidative damages in eggplant seedlings. Plant Growth Regul 77(1):87–98CrossRefGoogle Scholar
  48. Singh S, Singh A, Bashri G, Prasad SM (2016) Impact of Cd stress on cellular functioning and its amelioration by phytohormones: an overview on regulatory network. Plant Growth Regul 80(3):253–263CrossRefGoogle Scholar
  49. Tack FMG, Meers E (2010) Assisted phytoextraction: helping plants to help us. Elements 6(6):383–388CrossRefGoogle Scholar
  50. Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138(4):2337–2343PubMedPubMedCentralCrossRefGoogle Scholar
  51. Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71(1):66–73PubMedCrossRefPubMedCentralGoogle Scholar
  52. Verma A, Malik CP, Gupta VK (2011) In Vitro effects of brassinosteroids on the growth and antioxidant enzyme activities in groundnut. ISRN Agron 2012:8Google Scholar
  53. Wang J, Chen J, Pan K (2013) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res 20(3):1441–1449CrossRefGoogle Scholar
  54. Wei SH, Zhou QX, Wang X, Zhang KS, Guo GL, Ma LQY (2005) A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chin Sci Bull 50(1):33–38CrossRefGoogle Scholar
  55. Wojick M, D’Haen VJ, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens II: localization of cadmium in Thlaspi caerulescens. Environ Exp Bot 53(2):163–171Google Scholar
  56. Yu CL (2011) Study on the plant growth regulator enhancing remediation efficiency of Solanum nigrum L. on contaminated soil by cadmium. Harbin University of Science and Technology (in Chinese)Google Scholar
  57. Zhang L, Liang XG, Shen S, Yin H, Zhou LL, Gao Z, Lv XY, Zhou SL (2018) Increasing the abscisic acid level in maize grains induces precocious maturation by accelerating grain filling and dehydration. Plant Growth Regul 86(1):65–79CrossRefGoogle Scholar
  58. Zhao L, Xiong J, Li LP, Zhu C (2009) Low concentration of exogenous abscisic acid increases lead tolerance in rice seedlings. Biol Plant 53(4):728CrossRefGoogle Scholar
  59. Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49(2):750–759PubMedCrossRefPubMedCentralGoogle Scholar
  60. Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shuo Sun
    • 1
    • 2
  • Xiaofang Zhou
    • 1
    • 2
  • Xiaoying Cui
    • 1
    • 2
  • Chuanping Liu
    • 3
  • Yingxu Fan
    • 1
    • 2
  • Murray B. McBride
    • 4
  • Yingwen Li
    • 1
  • Zhian Li
    • 1
    Email author
  • Ping Zhuang
    • 1
    Email author
  1. 1.Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical GardenChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and ManagementGuangdong Institute of Eco-Environmental Science and TechnologyGuangzhouPeople’s Republic of China
  4. 4.Section of Soil and Crop Sciences, School of Integrative Plant SciencesCornell UniversityIthacaUSA

Personalised recommendations