Skip to main content
Log in

Pleiotropic influences of brassinosteroids on fruit crops: a review

  • Review Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are a group of naturally occurring plant steroidal compounds having varied biological activities. This group was recently added in the category of classical hormones and considered as sixth novel plant growth hormone. BRs regulate numerous important pomological attributes such as initiation and cessation of flowering, plant canopy architecture, micropropagation, cell division and elongation, vegetative growth, flowering, fruit set, fruit ripening, quality and yield. Besides, BRs can improve resistance/tolerance to biotic and abiotic stresses. These are also known to enhance postharvest fruit quality. Owing to multiple and diverse physiological roles in plant growth and development, BRs have been collectively referred to as ‘pleotropic phytohormones’. In the present review, we have attempted to highlight the conceptual research and development of BRs with their wide range of physiological functions and economic significance in relation to modern fruit production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aghdam MS, Mohammadkhani N (2014) Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food Bioprocess Technol 7:909–914

    Article  CAS  Google Scholar 

  • Ali B (2017) Practical applications of brassinosteroids in horticulture—some field perspectives. Sci Hortic 225:15–21

    Article  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    Article  CAS  Google Scholar 

  • Ayub RA, Reis L, Bosetto L, Lopes PZ. Galvão CW, Etto RM (2018a) Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening. Plant Growth Regul 84(1):159–167

    Article  CAS  Google Scholar 

  • Ayub RA, Reis L, Lopes PZ, Bosetto L (2018b) Ethylene and brassinosteroid effect on strawberry ripening after field spray. Rev Bras Frutic 40(3):110–113

    Article  Google Scholar 

  • Azpeitia A, Chan JL, Saenz L, Oropeza C (2003) Effect of 22(S), 23(S) homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J Hortic Sci Biotechnol 78:591–596

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2014) Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 80:176–183

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  PubMed  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat ZA, Reddy YN, Srihari D, Bhat JA, Rashid R, Rather JA (2011) New generation growth regulators—brassinosteroids and CPPU improve bunch and berry characteristics in ‘Tas-A-Ganesh’ grape. Int J Fruit Sci 11:309–315

    Article  Google Scholar 

  • Bishop GJ, Yokota T (2001) Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol 42:114–120

    Article  CAS  PubMed  Google Scholar 

  • Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobar N, Blanco-Portales R, Botella MA, Muñoz-Blanco J, Sánchez-Sevilla JF, Valpuesta V (2010) Generation and analysis of ESTs from strawberry (Fragaria ananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genom 11:503–510

    Article  CAS  Google Scholar 

  • Braun P, Wild A (1984) The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J Plant Physiol 49:427–451

    Google Scholar 

  • Canales E, Coll Y, Hernández I, Portieles R, García MR, López Y, Aranguren M, Alonso E, Delgado R, Lui M, Batista L (2016) Candidatus Liberibacter asiaticus’, causal agent of citrus Huanglongbing, is reduced by treatment with brassinosteroids. PLoS ONE 11:e0146223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai YM, Zhang Q, Tian L, Li CL, Xing Y, Qin L, Shen YY (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69:63–69

    Article  CAS  Google Scholar 

  • Chaiwanon J, Wang ZY (2015) Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champa WH, Gill MIS, Mahajan BVC, Arora NK, Bedi S (2015) Brassinosteroids improve quality of table grapes (Vitis vinifera L.) cv. Flame Seedless. Trop Agric Res 26:368–379

    Article  Google Scholar 

  • Chervin C, El-Kereamy A, Roustan JP, Latché A, Lamon J, Bouzayen M (2004) Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301–1305

    Article  CAS  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    Article  CAS  PubMed  Google Scholar 

  • Chung Y, Choe S (2013) The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit Rev Plant Sci 32:396–410

    Article  Google Scholar 

  • Clouse SD (2008) The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis. Proc Natl Acad Sci USA 105:7345–7346

    Article  PubMed  PubMed Central  Google Scholar 

  • Clouse SD (2011) Brassinosteroids. Arabidopsis Book 9:e0151

    Article  PubMed  PubMed Central  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coll Y, Coll F, Amorós A, Pujol M (2015) Brassinosteroids roles and applications: an up-date. Biologia 70:726 – 732

    Article  Google Scholar 

  • Cortes PA, Terrazas T, León TC, Larqué-Saavedra A (2003) Brassinosteroids effects on the precocity and yield of cactus pear. Sci Hortic 97:65–73

    Article  Google Scholar 

  • Darwin C (1881) The power of movements in plants. D. Appleton and Company, New York

    Google Scholar 

  • Davies PJ (1987) Plant hormones and their role in plant growth and development. Martinus Nijhoff Publishers, Dordrecht

    Book  Google Scholar 

  • Deng XG, Zhu T, Peng XJ, Xi DH, Guo H, Yin Y, Zhang DW, Lin HH (2016) Role of brassinosteroid signaling in modulating tobacco mosaic virus resistance in Nicotiana benthamiana. Sci Rep 6:205–209

    Google Scholar 

  • Derevyanchuk M, Litvinovskaya MR, Khripach V, Kravets V (2016) Brassinosteroid-induced de novo protein synthesis in Zea mays under salinity and bioinformatic approach for identification of heat shock proteins. Plant Growth Regul 78:297–305

    Article  CAS  Google Scholar 

  • Ding WM, Zhao YJ (1995) Effect of epiBR on activity of peroxidase and soluble protein content of cucumber cotyledon. Acta Phytophysiol Sin 21:259–264

    CAS  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. N Biotechnol 26:131–135

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Sarnowska E, Nagy F, Davis SJ (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS ONE 5:e14012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eremina M, Unterholzner SJ, Rathnayake AI (2016) Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc Natl Acad Sci USA 113:E5982–E5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    Article  CAS  Google Scholar 

  • Franck-Duchenne M, Wang Y, Tahar SB, Beachy RN (1998) In vitro stem elongation of sweet pepper in media containing 24-epi-brassinolide. Plant Cell Tissue Org Cult 53:79–84

    Article  CAS  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Noguchi T, Yokota T, Takatsuto S, Yoshida S (1998) Brassinosteroids in Arabidopsis thaliana. Phytochemistry 48:595–599

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130:930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles KL, Friesen KRD (1994) Micropropagation. In: Shargool PD, Ngo TT (eds) Biotechnological applications of plant cell cultures. CRC Press, Boca Raton

    Google Scholar 

  • Goetz M, Godt D, Roitsch T (2000) Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioning. Plant J 22:515–522

    Article  CAS  PubMed  Google Scholar 

  • Gomes MMA, Ferraz TM, Netto AT, Rosa RCC, Campostrini E, Leal NR, Zullo MAT, Nunez-Vazquez M (2003) Efeitos da aplicação de brassinosteróidesnastrocasgasosas e fluorescência da clorofilaemmaracujazeiroamarelo submetido à deficiênciahí drica. Braz J Plant Physiol 15:348–352

    Article  Google Scholar 

  • Gomes MDMA, Campostrini E, Leal NR, Viana AP, Ferraz TM, do-Nascimento Siqueira L, Rosa RCC, Netto AT, Nunez-Vázquez M, Zullo MAT (2006) Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Sci Hortic 110:235–240

    Article  CAS  Google Scholar 

  • Gomes MDMDA, Torres Netto A, Campostrini E, Bressan-Smith R, Zullo MAT, Ferraz TM, Siqueira LDN, Leal NR, Núñez-Vázquez M (2013) Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theor Exp Plant Physiol 25:186–195

    Google Scholar 

  • González-García MP, Vilarrasa-Blasi J, Zhiponova M, Divo F, Mora-García S, Russinova E, Caño-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859

    Article  CAS  PubMed  Google Scholar 

  • Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 2:E311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Gupta A, Singh M, Laxmi A (2015) Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis. Plant Physiol 168:307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Tian SP, Meng XH, Ding ZS (2006) Response of physiologic metabolism and cell structures in mango fruit to exogenous methyl salicylate under low temperature stress. Physiol Plant 128:125–133

    Article  CAS  Google Scholar 

  • Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175

    Article  Google Scholar 

  • Hayat S, Ahmad A (2011) Brassinosteroids: a class of plant hormone. Springer, Dordrecht

    Book  Google Scholar 

  • Hayat S, Ahmad A, Mobin M, Hussain A, Fariduddin Q (2000) Photosynthetic rate, growth and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38:469–471

    Article  CAS  Google Scholar 

  • He YJ, Xu RJ, Zhao YJ (1996) Enhancement of senescence by epibrassinolide in leaves of mung bean seedlings. Acta Phytophysiol Sin 22:58–62

    CAS  Google Scholar 

  • Hink MA, Shah K, Russinova E, De-Vries SC, Visser AJ (2008) Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 94:1052–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isci B, Gokbayrak Z (2015) Influence of brassinosteroids on fruit yield and quality of table grape ‘Alphonse Lavallee’. Vitis 54:17–19

    CAS  Google Scholar 

  • Iwahori S, Tominaga S, Higuchi S (1990) Retardation of abscission of citrus leaf and fruitlet explants by brassinolide. Plant Growth Regul 9:119–125

    Article  CAS  Google Scholar 

  • Jager CE, Symons GM, Ross JJ, Smith JJ, Reid JB (2005) The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta 221:141–148

    Article  CAS  PubMed  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres-Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kaplan U, Gokbayrak Z (2012) Effect of 22(S), 23(S)-homobrassinolide on adventitious root formation in grape rootstocks. S Afr J Enol Vitic 33:53–56

    Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2012) Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × ananassa). Sci Hortic 130:133–140

    Article  CAS  Google Scholar 

  • Khripach VA, Zhabinskii VN, de-Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Kim SK, Chang SC, Lee EJ, Chung WS, Kim YS, Hwang S, Lee JS (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123:997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, Lee JS, Takatsuto S, Kim SK (2005) Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer–Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17:2397–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535

    Article  CAS  PubMed  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Leavitt J (1980) Responses of plants to environmental stresses, vol II. Academic, New York

    Google Scholar 

  • Lee HS, Kim Y, Pham G, Kim JW, Song JH, Lee Y, Hwang YS, Roux SJ, Kim SH (2015) Brassinazole resistant 1 (BZR1)-dependent brassinosteroid signalling pathway leads to ectopic activation of quiescent cell division and suppresses columella stem cell differentiation. J Exp Bot 66:4835–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legue V, Rigal A, Bhalerao RP (2014) Adventitious root formation in tree species: involvement of transcription factors. Physiol Plant 151:192–198

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li Y, Chen S, An L (2010) Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot 61:4221–4230

    Article  CAS  PubMed  Google Scholar 

  • Lieselotte DB, Hofte M, de-Vleesschauwer D (2014) Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant 7:943–959

    Article  CAS  Google Scholar 

  • Lisso J, Altmann T, Mussig C (2006) Metabolic changes in fruits of the tomato dx mutant. Phytochemistry 67:2232–2238

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xi Z, Gao J, Meng Y, Lin S, Zhang Z (2016) Effects of exogenous 24-epibrassinolide to control grey mould and maintain postharvest quality of table grapes. Int J Food Sci Technol 51:1236–1243

    Article  CAS  Google Scholar 

  • Luan LY, Zhang ZW, Xi ZM, Huo SS, Ma LN (2016) Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. S Afr J Enol Vitic 34:196–203

    Google Scholar 

  • Ma Y, Xue H, Zhang L, Zhang F, Ou C, Wang F, Zhang Z (2016) Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple (Malus × domestica). Sci Rep 6:26719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandava N (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • Mandava B, Wang Y (2016) Effect of brassinosteroids on cherry maturation firmness and fruit quality. Acta Hortic 1139:451–458

    Article  Google Scholar 

  • Manoli A, Trevisan S, Quaggiotti S, Varotto S (2018) Identification and characterization of the BZR transcription factor family and its expression in response to abiotic stresses in Zea mays L. Plant Growth Regul 84:423–436

    Article  CAS  Google Scholar 

  • Matusmoto T, Yamada K, Yoshizawa Y, Oh K (2016) Comparison of effect of brassinosteroid and gibberellin biosynthesis inhibitors on growth of rice seedlings. Rice Sci 23:51–55

    Article  Google Scholar 

  • Moiseev A (1998) Preparation Epin: water of life. Eureka 68:22–25

    Google Scholar 

  • Mussig C (2005) Brassinosteroid-promoted growth. Plant Biol 7:110–117

    Article  CAS  PubMed  Google Scholar 

  • Mussig C, Shin GH, Altmann T (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiol 133:1261–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima N, Toyama S (1995) Study on brassinosteroid-enhanced sugar accumulation in cucumber epicotyls. Jpn J Crop Sci 64:616–621

    Article  CAS  Google Scholar 

  • Nakajima N, Toyama S (1999) Effects of epibrassinolide on sugar transport and allocation to the epicotyl in cucumber seedlings. Plant Prod Sci 2:165–171

    Article  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  CAS  PubMed  Google Scholar 

  • Nam KH, Li J (2004) The Arabidopsis transthyretin-like protein is a potential substrate of brassinosteroid-insensitive-1. Plant Cell 16:2406–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou E, Grumet R (2005) Brassinosteroid-induced femaleness in cucumber and relationship to ethylene production. Hortic Sci 40:1763–1767

    CAS  Google Scholar 

  • Park W (1998) Effect of epibrassinolide on hypocotyl growth of the tomato mutant diageotropica. Planta 207:120–124

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Tang XD, Feng HY (2004) Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. Nuomoci). Sci Hortic 101:4 07–416

    Article  CAS  Google Scholar 

  • Pereira-Netto AB (2012) Brassinosteroids: practical applications in agriculture and human health. Bentham Books, Sharjah, p 3–15

    Book  Google Scholar 

  • Pereira-Netto AB, Cruz-Silva CTA, Schaefer S, Ramírez JA, Galagovsky LR (2006) Brassinosteroid-stimulated branch elongation in the Marubakaido apple rootstock. Trees 20:286–291

    Article  CAS  Google Scholar 

  • Pereira-Netto AB, Roessner U, Fujioka S, Bacic A, Asami T, Yoshida S, Clouse SD (2009) Shooting control by brassinosteroids: metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. Tree Physiol 29:607–620

    Article  CAS  PubMed  Google Scholar 

  • Pipattanawong N, Fujishige N, Yamane K, Ogata R (1996) Effects of brassinosteroid on vegetative and reproductive growth in two day-neutral strawberries. J Jpn Soc Hortic Sci 65:651–654

    Article  CAS  Google Scholar 

  • Pozo L, Rivera T, Noriega C, Iglesias M, Coll F, Robaina C, Velázquez B, Rodríguez OL, Rodríguez ME (1994) Algunos resultadosen el cultivo de losfrutalesmediante la utilización de brasinoesteeroides o compuestosanálogos. Cult Trop 15:79–92

    Google Scholar 

  • Que F, Wang GL, Xu ZS, Wang F, Xiong AS (2017) Transcriptional regulation of brassinosteroid accumulation during carrot development and the potential role of brassinosteroids in petiole elongation. Front Plant Sci 8:1356. https://doi.org/10.3389/fpls.2017.01356

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids—a new class of phytohormones. Curr Sci 82:1239–1245

    Google Scholar 

  • Roddick JG, Rijnenberg AL, Ikekawa N (1993) Developmental effects of 24-epibrassinolide in excised roots of tomato grown in vitro. Physiol Plant 87:453–458

    Article  CAS  Google Scholar 

  • Roghabadi MA, Pakkish Z (2014) Role of brassinosteroid on yield, fruit quality and postharvest storage of ‘TakDanehe Mashhad’ sweet cherry (Prunus avium L.). Agric Commun 2:49–56

    Google Scholar 

  • Saini S, Sharma I, Patil PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and cross talks. Front Plant Sci 6:1–17

    Article  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Schlagnhaufer C, Arteca RN, Yopp JH (1984) A brassinosteroid-cytokinin interaction on ethylene production by etiolated mung bean segments. Physiol Plant 60:347–350

    Article  CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta Stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–370

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama K, Kuraishi S (1989) Stimulation of fruit set of’ ‘Morita’ Navel orange with brassinolide. Acta Hortic 239:345–348

    Article  Google Scholar 

  • Suzuki A, Murakami Y, Maotani T (1988) Physiological studies on physiological fruit drop of persimmon, Diospyros kaki Thunb, 4: effect of fruit growth on physiological fruit drop of persimmon. Bull Fruit Tree Res Stn A (Jpn) 15:41–50

    Google Scholar 

  • Swamy KN, Rao SSR (2006) Influence of brassinosteroids on rooting and growth of geranium (Pelargonium sp.) stem cuttings. Asian J Plant Sci 5:619–622

    Article  CAS  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids: brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  • Tambe TB (2002) Effect of gibberellic acid in combination with brassinosteroid on berry size, yield and quality of Thompson Seedless grapes. J Maharashtra Agric Univ 27:151–153

    CAS  Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Han Z, Chai J (2016) Q&A: what are brassinosteroids and how do they act in plants? BMC Biol 14:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27:2261–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upreti KK, Murti GSR (2004) Effects of brassmosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol Plant 48:407–411

    Article  CAS  Google Scholar 

  • Wang CF, You Y, Chen FXS, Wang J, Wang JS (2004) Adjusting effect of brassinolide and GA (4) on the orange growth. Acta Agric Univ Jiangxiensis 26:759–762

    CAS  Google Scholar 

  • Warusavitharana AJ, Tambe TB, Kshirsagar DB (2008) Effect of cytokinins and brassinosteroid with gibberellic acid on yield and quality of Thompson Seedless grapes. Acta Hortic 785:217–224

    Article  CAS  Google Scholar 

  • Watanabe T, Noguchi T, Kuriyama H, Kadota M, Takatsuto S, Kamuro Y (1997) Effects of brassinosteroid compound [TS303] on fruit-setting, fruit-growth taking roots and cold-resistance. Acta Hortic 436:267–270

    Google Scholar 

  • Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100

    Article  CAS  PubMed  Google Scholar 

  • Xi Z, Zhang Z, Huo S et al (2013) Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem 141:3056–3065

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Gao X, Xi Z, Zhang H et al (2015) Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera ‘Cabernet Sauvignon’ berry skin. Plant Growth Regul 75:741–750

    Article  CAS  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600

    Article  CAS  PubMed  Google Scholar 

  • Yoshiok T, Nesumi H, Ito Y (1990) Ibid 59:44–45

    Google Scholar 

  • Yu X, Li L, Li L (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci USA 105:7618–7623

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaharah SS, Singh Z (2010) Role of brassinosteroids in mango fruit ripening. Acta Hort 934:929–935

    Google Scholar 

  • Zaharah SS, Singh Z, Symons GM, Reid JB (2012) Role of brassinosteroids, ethylene, abscisic acid, and indole-3- acetic acid in mango fruit ripening. J Plant Growth Regul 31:363–372

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang Z, Qin G, Tian S (2010) Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biol Technol 56:50–55

    Article  CAS  Google Scholar 

  • Zhu F, Yun Z, Ma Q, Gong Q, Zeng Y, Xu J, Cheng Y, Deng X (2015) Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Postharvest Biol Technol 100:8–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Sharma.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghel, M., Nagaraja, A., Srivastav, M. et al. Pleiotropic influences of brassinosteroids on fruit crops: a review. Plant Growth Regul 87, 375–388 (2019). https://doi.org/10.1007/s10725-018-0471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0471-8

Keywords

Navigation