Skip to main content
Log in

Interaction between hydrogen sulfide and hormones in plant physiological responses

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The gasotransmitter, hydrogen sulfide (H2S) is involved in plant growth and development, and stress responses. Plant hormones influence the levels of endogenous H2S and H2S may affect the biosynthesis, transport, and signal transduction of different phytohormones. The dual role of H2S in the interaction with phytohormones contributes to the physiological functions of H2S in the life cycle and responses to abiotic stresses in plants. The biological effect of H2S might depend on the ratio between phytohormones. However, the mechanism by which H2S and plant hormones interplay in plants remains fragmentary. This review summarized the biosynthesis and degradation of H2S and discussed the cross-talk between H2S and different phytohormones along with the future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane 1-carboxylic acid

ACO:

ACC oxidase

ACS:

ACC synthase

ATFs:

AP2-domain-containing transcription factors

Ca:

Calcium

CA:

Carbonic anhydrase

CAS:

Cyanoalanine synthase

Cd:

Cadimum

CDes:

Cysteine desulfhydrases

CDPK:

Calcium-dependent protein kinase

CO:

Carbon monoxide

COS:

Carbonyl sulfide

Cu:

Copper

DCD:

d-Cysteine desulfhydrase

DES:

l-Cys desulfhydrase

ET:

Ethylene

EUI:

Elongated uppermost internode

GA:

Gibberellin

GA2ox:

GA2-oxidase

HO:

Heme oxidase

H2S:

Hydrogen sulfide

HT:

Hypotaurine

IAA:

Indole-3-acetic acid

JA:

Jasmonic acid

JAZ:

JASMONATE ZIM-domain

LCD:

l-Cysteine desulfhydrase

NCED:

9-cis-Epoxycarotenoid dioxygenase

NaHS:

Sodium hydrosulfide

NFS:

Nitrogenase Fe–S cluster

NO:

Nitric oxide

NPA:

N-1-naphthylphthalamic acid

OAS-TL:

O-acetyl-l-serine(thiol)lyase

PCD:

Programmed cell death

SA:

Salicylic acid

SiR:

Sulfite reductase

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Ubeed HMS, Wills RBH, Bowyer MC, Vuong QV, Golding JB (2017) Interaction of exogenous hydrogen sulphide and ethylene on senescence of green leafy vegetables. Postharvest Biol Technol 133:81–87

    Article  CAS  Google Scholar 

  • Ali B, Mwamba TM, Gill RA, Yang C, Ali S, Daud MK, Wu Y, Zhou W (2014) Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul 74:261–273

    Article  CAS  Google Scholar 

  • Alvarez C, Calo L, Romero LC, Garcia I, Gotor C (2010) An O-Acetylserine(thiol)lyase homolog with l-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152:656–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez C, Garcia I, Romero LC, Gotor C (2012) Mitochondrial sulfide detoxification requires a funtional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana. Mol Plant 5:1217–1226

    Article  CAS  PubMed  Google Scholar 

  • Aroca A, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol 168:334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca A, Benito JM, Gotor C, Romero LC (2017) Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. J Exp Bot 68:4915–4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2018) Hydrogen sulphide trapeze: environmental stress amelioration and phytohormone crosstalk. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2018.08.028

    Article  PubMed  Google Scholar 

  • Barry CS, LIop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudouin E, Poilevey A, Indiketi Hewage N, Cochet F, Puyaubert J, Bailly C (2016) The significance of hydrogen sulfide for Arabidopsis seed germination. Front Plant Sci 7:930

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloem E, Riemenschneider A, Volker J, Papenbrock J, Schmidt A, Salac I, Haneklaus S, Schnug E (2004) Sulphur supply and infection with Pyrenopeziza brassicae influence l-cysteine desulphydrase activity in Brassica napus L. J Exp Bot 55:2305–2312

    Article  CAS  PubMed  Google Scholar 

  • Che YM, Hou LX, Sun YJ, Liu X (2016) Hydrogen sulfide functions in regulation of stomatal movement and stress response in plant. Biotechnol Bull 32:18–26. (in Chinese)

    Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis thaliana. Plant Physiol 154:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang WH, Wu FH, You CY, Liu TW, Dong XJ, He JX, Zheng HL (2013) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362:301–318

    Article  CAS  Google Scholar 

  • Chen J, Wu FH, Shang YT, Wang WH, Hu WJ, Simon M, Liu X, Shangguan ZP, Zheng HL (2015) Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency. J Exp Bot 66:6605–6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Shi J, Dong Y, Ma Y, Peng Y, Hu X, Chen J (2018) Hydrogen sulfide enhances poplar toelrance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen species. Plant Growth Regul 84:11–23

    Article  CAS  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64:1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79:391–399

    Article  CAS  Google Scholar 

  • Duan B, Ma Y, Jiang M, Yang F, Ni L, Lu W (2015) Improvement of photosynthesis in rice (Oryza sativa L.) as a result of an increase in stomatal aperture and density by exogenous hydrogen sulfide treatment. Plant Growth Regul 75:33–44

    Article  CAS  Google Scholar 

  • Fang HH, Jing T, Liu ZQ, Zhang L, Jin Z, Pen Y (2014a) Hydrogen sulfide interacts with calcium signaling to enhancethe chromium tolerance in Setaria italica. Cell Calcium 56:472–481

    Article  CAS  PubMed  Google Scholar 

  • Fang T, Cao Z, Li J, Shen W, Huang L (2014b) Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem 76:44–51

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Liu Z, Long Y, Liang Y, Jin Z, Zhang L, Liu D, Li H, Zhai J, Pei Y (2017) The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis. Plant J 91:1038–1050

    Article  CAS  PubMed  Google Scholar 

  • Filipovic MR, Jovanovic VM (2017) More than just an intermediate: hydrogen sulfide signalling in plants. J Exp Bot 68:4733–4736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia MJ, Lucena C, Romera FJ, Alcantara E, Perez-Vicente R (2010) Ethylene and nitric oxide involvedment in the up-regulation of key genes related to iron acquisition and homestasis in Arabidopsis. J Exp Bot 61:3885–3899

    Article  CAS  PubMed  Google Scholar 

  • Garcia MJ, Suarez V, Romera FJ, Alcantara E, Perez-Vicente R (2011) A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in strategy I plants. Plant Physiol Biochem 49:537–544

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signaling. New Phytol 188:977–984

    Article  CAS  PubMed  Google Scholar 

  • Hancock JT (2018) Hydrogen sulfide and environmental stresses. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2018.08.034

    Article  Google Scholar 

  • Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee? Plant Physiol Biochem 78:37–42

    Article  CAS  PubMed  Google Scholar 

  • Harrington HM, Smith IK (1980) Cysteine metabolism in cultured tobacco cells. Plant Physiol 65:151–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, He L, Gu M (2012a) Interactions between nitric oxide and plant hormones in aluminum tolerance. Plant Signal Behav 7:469–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He HY, He LF, Gu MH, Li XF (2012b) Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Sci 183:123–130

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Yamada N, Yoshida R, Ihara H, Sawa T, Akaike T, Iwai S (2015) 8-Mercapto-cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. Plant Cell Physiol 56:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Liu J, Hou L, Li X, Liu X (2011) H2S may function downstream of H2O2 in jasmonic acid-induced stomatal closure in Vicia faba. Chin Bull Bot 6:396–406. (in Chinese)

    Google Scholar 

  • Hou ZH, Wang LX, Liu J, Hou L, Liu X (2013) Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. J Integr Plant Biol 55:277–289

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormone. J Exp Bot 68:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Hu Y, Fan T, Li J (2015) Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Sci Rep 5:8251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin ZP, Pei YX (2015) Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxid Med Cell Longev 2015:1–6

    Google Scholar 

  • Jin ZP, Pei Y (2016) Hydrogen sulfide: the shutter button of stomata in plants. Sci China Life Sci 59:1187–1188

    Article  PubMed  Google Scholar 

  • Jin CW, Du ST, Shamsi IH, Luo BF, Lin XY (2011a) NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J Exp Bot 62:3875–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin ZP, Shen JJ, Qiao ZJ, Yang GD, Wang R, Pei YX (2011b) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414:481–486

    Article  CAS  PubMed  Google Scholar 

  • Jin ZP, Xue SW, Luo YN, Tian BH, Fang HH, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62:41–46

    Article  CAS  PubMed  Google Scholar 

  • Jin ZP, Wang Z, Ma Q, Sun L, Zhang L, Liu Z, Liu D, Hao X, Pei Y (2017) Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana. Plant Soil 419:141–152

    Article  CAS  Google Scholar 

  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R, Montagu M (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamattina L, Garcia-Mata C (2016) Gasotransmitters in plants, signaling and communication in plants. Springer, Switzerland, pp 23–51

    Book  Google Scholar 

  • Leon S, Tournaine B, Briat JF, Lobreaux S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a Nifs-like plastidial cysteine desulphurase. Biochem J 366:557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Gong M, Xie H, Yang L, Li J (2012) Hydrogen sulfide donor sodium hydrosulfide-induced heat toelrance in tobacco (Nicotiana tabacum L.) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci 185:185–189

    Article  CAS  PubMed  Google Scholar 

  • Li YJ, Shi ZQ, Gan LJ, Chen J (2014) Hydrogen sulfide is a novel gasotransmitter with pivotal role in regulating lateral root formation in plants. Plant Signal Behav 9:e29127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Xie LR, Li XJ (2015a) Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J Plant Physiol 177:121–127

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Long WB, Yang SZ, Wang YC, Tang JH, Wen L, Zhu BY, Min X (2015b) Endogenous hydrogen sulfide regualted by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiol Plant 37:1–11

    Article  CAS  Google Scholar 

  • Lin VS, Chang CJ (2012) Fluorescent probes for sensing and imaging biological hydrogen sulfide. Curr Opin Chem Biol 16:1–7

    Article  CAS  Google Scholar 

  • Lin YT, Li MY, Cui WT, Lu W, Shen WB (2012) Haem Oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation. J Plant Growth Regul 31:519–528

    Article  CAS  Google Scholar 

  • Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I, Wood ME, Whiteman M, Hancock JT (2010) A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem 48:931–935

    Article  CAS  PubMed  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Wood M, Whiteman M, Hancock JT (2011) Hydrogen sulfide effects on stomatal apertures. Plant Signal Behav 10:1444–1446

    Article  CAS  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hou ZH, Zhao FG, Liu X (2011a) Hydrogen sulfide mediates ABA-induced stomatal closure of Vicia faba L. Acta Bot Boreal-Occident Sin 31:298–304. (in Chinese)

    CAS  Google Scholar 

  • Liu J, Hou LX, Liu GH, Liu X, Wang XC (2011b) Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana. Chin Sci Bull 56:3547–3553

    Article  CAS  Google Scholar 

  • Liu J, Hou ZH, Liu GH, Hou L, Liu X (2012) Hydrogen sulfide may function downstream of nitric oxide in ethylene induced stomatal closure in Vicia faba L. J Integr Agr 11:1644–1653

    Article  CAS  Google Scholar 

  • Liu Z, Fang H, Pei Y, Jin Z, Zhang L, Liu D (2015) WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in Arabidopsis thaliana. Sci Bull 60:995–1001

    Article  CAS  Google Scholar 

  • Liu X, Chen J, Wang GH, Wang WH, Shen ZJ, Luo MR, Gao GF, Simon M, Ghoto K, Zheng HL (2016) Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regualting genes expressions of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. Plant Soil 400:177–192

    Article  CAS  Google Scholar 

  • Mur LAJ, Laarhoven LJJ, Harren FJM, Hall MA, Smith AR (2008) Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response. Plant Physiol 148:1537–1546

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey S (2014) Hydrogen sulfide: a new node in the acscisic acid-dependent guard cell signaling network? Plant Physiol 166:1680–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papanatsiou M, Scuffi D, Blatt MR, García-Mata C (2015) Hydrogen sulfide regulates inward-rectifying K+ channels in conjunction with stomatal closure. Plant Physiol 168:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A (2007) Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - from the field to the test tube and back. Plant Biol (Stuttg) 9:582–588

    Article  CAS  Google Scholar 

  • Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507

    Article  CAS  PubMed  Google Scholar 

  • Peng RY, Bian ZY, Zhou LN, Cheng W, Hai N, Yang CQ, Yang T, Wang XY, Wang CY (2016) Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.). Plant Cell Rep 35:2325–2340

    Article  CAS  PubMed  Google Scholar 

  • Qiao ZJ, Jing T, Liu ZQ, Zhang L, Jin Z, Liu D, Pei Y (2015) H2S acting as a downstream signaling molecule of SA regulates Cd tolerance in Arabidopsis. Plant Soil 393(1–2):137–146

    Article  CAS  Google Scholar 

  • Qiao ZJ, Jing T, Jin Z, Liang Y, Zhang L, Liu Z, Liu D, Pen Y (2016) CDPKs enhance Cd tolerance through intensifying H2S signal in Arabidopsis thaliana. Plant Soil 398:99–110

    Article  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Riemenschneider A (2006) Isolation and characterization of cysteine-degrading and H2S-releasing enzymes of higher plants. PhD Thesis, University of Hannover

  • Riemenschneider A, Bonacina E, Schmidt A, Papenbrock J (2005a) Remove from marked Records Isolation and characterization of a second d-cysteine desulfhydrase-like protein from Arabidopsis. In: Saito K, de Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A, et al (eds) Sulfur transport and assimilation in plants in the Post Genomic Era. Papers from the 6th International Workshop on Plant Sulfur Metabolism, Chiba, Japan, pp 103–106

  • Riemenschneider A, Nikiforova V, Hoefgen R, de Kok LJ, Papenbrock J (2005b) Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol Biochem 43:473–483

    Article  CAS  PubMed  Google Scholar 

  • Romero LC, Aroca MA, Laureano-Marin AM, Moreno I, Garcia I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7:264–276

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A (1982) A cysteine desulfhydrase from spinach leaves specific for D-cysteine. Z Pflanzenphysiol 107:301–312

    Article  CAS  Google Scholar 

  • Scuffi D, Alvarez C, Laspina N, Gotor C, Lamattina L, Garcia-Mata C, Sekiya J, Schmidt A, Wilson LG (2014) Hydrogen sulfide generated by l-Cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol 166:2065–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiya J, Schmidt A, Wilson LG (1982) Emission of hydrogen sulfide by leaf tissue in response to L-cysteine. Plant Physiol 70:430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao R, Wang K, Shangguan Z (2010) Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed bt ESR spectroscopy and fast OJIP fluorescence rise. J Plant Physiol 167:472–479

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of acscisic acid and gibberellins in Arabidopsis. PLoS Genet 9:e1003577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Zhou W, Yang W (2017) APETALA 2-domain-containing transcription factors: focusing on acscisic acid and gibberellins antagonism. New Phytol 1:1–7

    Google Scholar 

  • Sirko A, Blaszczyk A, Liszewska F (2004) Overproduction os SAT and OASTL in transgenic plants: a survey of effects. J Exp Bot 55:1881–1888

    Article  CAS  PubMed  Google Scholar 

  • Soutourina J, Blanquet S, Plateau P (2001) Role of d-cysteine desulfhydrase in the adaptation of Escherichia coli to d-cysteine. J Biol Chem 276:40864–40872

    Article  CAS  PubMed  Google Scholar 

  • Stimler K, Berry JA, Yakir D (2012) Effects of carboonyl sulfide and carbonic anhydrase on stomatal conductance. Plant Physiol 157:509–517

    Article  CAS  Google Scholar 

  • Tai CH, Cook PF (2000) O-acetylserine sulfhydrylase. Adv Enzymol Relat Areas Mol Biol 74:185–234

    CAS  PubMed  Google Scholar 

  • Wang R (2012) Physiological implication of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Liang XL, Wan Q, Wang XM, Bi YR (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230:293–307

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351:107–119

    Article  CAS  Google Scholar 

  • Wang L, Wan R, Shi Y, Xue S (2016) Hydrogen sulfide activates S-type anion channel via OST1 and Ca2+ modules. Mol Plant 9:489–491

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Lai D, Mao Y, Zhang W, Shen W, Guan R (2013) Molecular cloning, characterization, and expression analysis of a novel gene encoding l-cysteine desulfhydrase from Brassica napus. Mol Biotechnol 54:737–746

    Article  CAS  PubMed  Google Scholar 

  • Xie YJ, Zhang C, Lai DW, Sun Y, Samma MK, Zhang J, Shen W (2014) Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. J Plant Physiol 171:53–62

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang WY, Yin HX, Liu XJ, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interaction between abscisic acid and gibberellins in rice. PLoS Genet 6:e1001098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and beta-cyanoalanine synthase. Plant Cell Physiol 41:465–476

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Shang H, Zhang C, Wang X, Wei M, Yang F, Shi Q (2011) Effects of exogenous H2S on the physiological and biochemical characteristics of the cucumber hypocotyls and radicles under cadmium stress. Acta Horticulturae Sinica 38:2131–2139. (in Chinese)

    CAS  Google Scholar 

  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY, Fang F, Ma DF, Wei ZJ, Hu LY (2009a) Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J Integr Plant Biol 51:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ye YK, Wang SH, Luo JP, Tang J, Ma DF (2009b) Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul 58:243–250

    Article  CAS  Google Scholar 

  • Zhang H, Dou W, Jiang CX, Wei ZJ, Liu J, Jones RL (2010) Hydrogen sulfide stimulates β-amylase activity during early stages of wheat grain germination. Plant Signal Behav 5:1031–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hu SL, Zhang ZJ, Hu LY, Jiang CX, Wei ZJ, Liu J, Wang HL, Jiang ST (2011) Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biol Tec 60:251–257

    Article  CAS  Google Scholar 

  • Zhou ZH, Wang Y, Ye XY, Li ZG (2018) Signaling molecule hydrogen sulfide improves seed germination and seedling growth of maize (Zea mays L.) under high temperature by inducing antioxidant system and osmolyte biosynthesis. Front Plant Sci 9:1288

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellinc acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of ITR1 in Arabidopsis thaliana. J Hazard Mater 239–240:302–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the National Natural Science Foundation of China (No. 31660352), the Science & Technology Development Fund of Guangxi Academy of Agricultural Sciences (Guinongke2017JZ11 and Guinongke2017JZ21), and Natural Science Foundation of Guangxi (2015GXNSFAA139079). We thank the reviewers for their helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Fei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Garcia-Mata, C. & He, LF. Interaction between hydrogen sulfide and hormones in plant physiological responses. Plant Growth Regul 87, 175–186 (2019). https://doi.org/10.1007/s10725-018-0454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0454-9

Keywords

Navigation