The newly synthesized plant growth regulator S-methylmethionine salicylate may provide protection against high salinity in wheat

  • Tibor Janda
  • Radwan Khalil
  • Judit Tajti
  • Magda Pál
  • Gabriella Szalai
  • Szabolcs Rudnóy
  • Ilona Rácz
  • György Kátay
  • Anna B. Molnár
  • Magdalena A. Lejmel
  • Tihana Marček
  • Gyöngyvér Gell
  • Zsófia Birinyi
  • Éva Darko
Original paper

Abstract

High salinity is one of the major environmental factors limiting the productivity of crop species worldwide. Improving the stress tolerance of cultivated plants and thus increasing crop yields in an environmentally friendly way is a crucial task in agriculture. In the present work the ability of a new derivative, S-methylmethionine-salicylate (MMS), to improve the salt tolerance of wheat plants was tested parallel with its related compounds salicylic acid and S-methylmethionine. The results show that while these compounds are harmful at relatively high concentration (0.5 mM), they may provide protection against high salinity at lower (0.1 mM) concentration. This was confirmed by gas exchange, chlorophyll content and chlorophyll-a fluorescence induction measurements. While osmotic adjustment probably plays a critical role in the improved salt tolerance, neither Na or K transport from the roots to the shoots nor proline synthesis are the main factors in the tolerance induced by the compounds tested. MMS, S-methylmethionine and Na-salicylate had different effects on flavonol biosynthesis. It was also shown that salt treatment had a substantial influence on the SA metabolism in wheat roots and leaves. Present results suggest that the investigated compounds can be used to improve salt tolerance in plants.

Keywords

Gene expression Osmotic adjustment Salicylic acid Salt stress S-methylmethionine Triticum aestivum

Notes

Acknowledgements

This work was funded by the National Research, Development and Innovation Office (K 108838).

Supplementary material

10725_2018_398_MOESM1_ESM.pdf (127 kb)
Supplementary material 1 (PDF 127 KB)
10725_2018_398_MOESM2_ESM.pdf (138 kb)
Supplementary material 2 (PDF 138 KB)
10725_2018_398_MOESM3_ESM.pdf (206 kb)
Supplementary material 3 (PDF 205 KB)
10725_2018_398_MOESM4_ESM.pdf (62 kb)
Supplementary material 4 (PDF 62 KB)
10725_2018_398_MOESM5_ESM.pdf (119 kb)
Supplementary material 5 (PDF 119 KB)
10725_2018_398_MOESM6_ESM.pdf (221 kb)
Supplementary material 6 (PDF 221 KB)
10725_2018_398_MOESM7_ESM.pdf (69 kb)
Supplementary material 7 (PDF 69 KB)
10725_2018_398_MOESM8_ESM.pdf (219 kb)
Supplementary material 8 (PDF 218 KB)

References

  1. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76CrossRefPubMedGoogle Scholar
  2. Anton A, Rékási M, Uzinger N, Széplábi G, Makó A (2012) Modelling the potential effects of the Hungarian red mud disaster on soil properties. Water Air Soil Pollut 223:5175–5188CrossRefGoogle Scholar
  3. Bajji M, Lutts S, Kinet J (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci 160:669–681CrossRefPubMedGoogle Scholar
  4. Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol 22:1–6CrossRefPubMedGoogle Scholar
  5. Bates BL, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  6. Cao Y, Zhang ZW, Xue LW, Du JB, Shang J, Xu F et al (2009) Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. Z Naturforsch C 64:231–238CrossRefPubMedGoogle Scholar
  7. Darko E, Janda T, Majláth I, Szopko D, Dulai S, Molnár I, Türkösi E, Molnár-Láng M (2015) Salt stress response of wheat–barley addition lines carrying chromosomes from the winter barley “Manas”. Euphytica 203:491–504CrossRefGoogle Scholar
  8. Darko E, Gierczik K, Hudák O, Forgó P, Pál M, Türkösi E, Kovács V, Dulai S, Majláth I, Molnár I, Janda T, Molnár-Láng M (2017) Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS ONE 12(3):e0174170CrossRefPubMedPubMedCentralGoogle Scholar
  9. Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507CrossRefPubMedGoogle Scholar
  10. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi Á, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192CrossRefPubMedGoogle Scholar
  12. Gharbi E, Martínez JP. Benahmed H, Dailly H, Quinet M, Lutts S (2017) The salicylic acid analog 2,6-dichloroisonicotinic acid has specific impact on the response of the halophyte plant species Solanum chilense to salinity. Plant Growth Regul 82:517–525CrossRefGoogle Scholar
  13. Gondor OK, Pal M, Darko E, Janda T, Szalai G (2016a) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLoS ONE 11(8): Paper e0160157CrossRefGoogle Scholar
  14. Gondor OK, Janda T, Soós V, Pál M, Majláth I, Adak MK, Balázs E, Szalai G (2016b) Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front Plant Sci 7:1447CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499CrossRefPubMedGoogle Scholar
  16. Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300CrossRefGoogle Scholar
  17. Horváth E, Brunner S, Bela K, Papdi C, Szabados L, Tari I, Csiszár J (2015) Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Func Plant Biol 42:1129–1140Google Scholar
  18. Janda T, Gondor OK, Yordanova R, Szalai G, Pál M (2014) Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant 36:2537–2546CrossRefGoogle Scholar
  19. Janda T, Darko É, Shehata S, Kovács V, Pál M, Szalai G (2016) Salt acclimation processes in wheat. Plant Physiol Biochem 101:68–75CrossRefPubMedGoogle Scholar
  20. Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268CrossRefPubMedPubMedCentralGoogle Scholar
  21. Khan NA, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1:e1CrossRefGoogle Scholar
  22. Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462PubMedPubMedCentralGoogle Scholar
  23. Klughammer C, Schreiber U (2008) Saturation Pulse method for assessment of energy conversion in PS I. PAM Appl Notes 1:11–14Google Scholar
  24. Lu H, Greenberg JT, Holuigue L (2016) Editorial: salicylic acid signaling networks. Front Plant Sci 7:238PubMedPubMedCentralGoogle Scholar
  25. Ludmerszki E, Chounramany S, Oláh C, Kátay G, Rácz I, Almási A, Solti Á, Bélai I, Rudnóy S (2017) Protective role of S-methylmethionine-salicylate in maize plants infected with Maize dwarf mosaic virus. Eur J Plant Pathol 149:145–156CrossRefGoogle Scholar
  26. Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxy cinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:838CrossRefPubMedPubMedCentralGoogle Scholar
  27. Meuwly P, Métraux JP (1993) Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal Biochem 214:500–505CrossRefPubMedGoogle Scholar
  28. Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400CrossRefPubMedGoogle Scholar
  29. Neto MCL, Lobo AKM, Martins MO, Fontenele AV, Silveira JAG (2014) Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. J Plant Physiol 171:23–30CrossRefGoogle Scholar
  30. Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol Plant 125:356–364CrossRefGoogle Scholar
  31. Páldi K, Rácz I, Szigeti Z, Rudnóy S (2014) S-methylmethionine alleviates the cold stress damage in maize through protection of the photosynthetic apparatus and stimulation of the phenylpropanoid pathway. Biol Plant 58:189–194CrossRefGoogle Scholar
  32. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11CrossRefPubMedPubMedCentralGoogle Scholar
  33. Poór P, Gémes K, Horváth F, Szepesi Á, Simon ML, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13:105–114CrossRefPubMedGoogle Scholar
  34. Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231CrossRefPubMedGoogle Scholar
  35. Rácz I, Páldi E, Szalai G, Janda T, Lásztity D (2008) S-methylmethionine reduces cell membrane damage in higher plants exposed to low temperature stress. J Plant Physiol 165:1483–1490CrossRefPubMedGoogle Scholar
  36. Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sun Z, Hou S, Yang W, Han Y (2012) Exogenous application of salicylic acid enhanced the rutin accumulation and influenced the expression patterns of rutin biosynthesis related genes in Fagopyrum tartaricum Gaertn. leaves. Plant Growth Regul 68:9–15CrossRefGoogle Scholar
  38. Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci 195:165–171CrossRefGoogle Scholar
  39. Szalai G, Pál M, Árendás T, Janda T (2016) Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cereal Res Commun 44:537–548CrossRefGoogle Scholar
  40. Wan S, Wang W, Zhou T, Zhang Y, Chen J, Xiao B, Yang Y, Yu Y (2018) Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress. Plant Growth Regul 84:481–492CrossRefGoogle Scholar
  41. Xiong JL, Dai LL, Ma N, Zhang CL (2018) Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regul 85:73–90CrossRefGoogle Scholar
  42. Zhao G, Yu H, Liu M, Lu Y, Ouyang B (2017) Identification of salt-stress responsive microRNAs from Solanum lycopersicum and Solanum pimpinellifolium. Plant Growth Regul 83:129–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Tibor Janda
    • 1
  • Radwan Khalil
    • 2
  • Judit Tajti
    • 1
  • Magda Pál
    • 1
  • Gabriella Szalai
    • 1
  • Szabolcs Rudnóy
    • 3
  • Ilona Rácz
    • 3
  • György Kátay
    • 4
  • Anna B. Molnár
    • 1
  • Magdalena A. Lejmel
    • 1
  • Tihana Marček
    • 5
  • Gyöngyvér Gell
    • 1
  • Zsófia Birinyi
    • 1
  • Éva Darko
    • 1
  1. 1.Agricultural Institute, Centre for Agricultural Research, MTAMartonvásárHungary
  2. 2.Botany Department, Faculty of ScienceBenha UniversityBenhaEgypt
  3. 3.Eötvös Loránd UniversityBudapestHungary
  4. 4.Institute of Plant Protection, Centre for Agricultural Research, MTABudapestHungary
  5. 5.Faculty of Food Technology OsijekUniversity of OsijekOsijekCroatia

Personalised recommendations