Advertisement

Plant Growth Regulation

, Volume 85, Issue 2, pp 281–292 | Cite as

Overexpression of HvCBF7 and HvCBF9 changes salt and drought tolerance in Arabidopsis

  • Shuya Yin
  • Yong Han
  • Lu Huang
  • Ye Hong
  • Guoping Zhang
Original paper

Abstract

Crop yield losses due to the extreme environments have risen steadily over the past several decades, so it is quite imperative to develop the crop cultivars with high stress tolerance for ensuring global food security. Dehydration responsive element binding protein/C-repeat binding factor (DREB/CBF) transcription factors are widely concerned as key regulators, specifically in abiotic tolerance of plants. In this study, we found that barley CBF7 and CBF9 were induced by salt and drought stress. Over-expression of HvCBF7 and HvCBF9 enhanced salt tolerance, showing increased survival rate of Arabidopsis seedlings under salt stress, but reduced drought and salt tolerance in adult plants before flowering stage, as reflected by higher malondialdehyde and proline contents. The altered phenotype was due to differently regulating stress response genes. In addition, we also found that many genes expressing differently under salt stress were reversely regulated by AtCBF3, a transcription factor in Arabidopsis.

Keywords

Arabidopsis Drought Regulation Salt Tolerance Transcription factor 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (31620103912), China Agriculture Research System (CARS-05) and Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP). Tibetan wild barley accessions in this research was provided by Professor Dongfa Sun (Huazhong Agricultural University, China).

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

Supplementary material

10725_2018_394_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1252 KB)
10725_2018_394_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 19 KB)
10725_2018_394_MOESM3_ESM.xlsx (888 kb)
Supplementary material 3 (XLSX 888 KB)

References

  1. Ábrahám E, Hourton-Cabassa C, Erdei L, Szabados L (2010) Methods for determination of proline in plants plant stress tolerance. Humana Press, New York, pp 317–331CrossRefGoogle Scholar
  2. Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160(4):1698–1709CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4(4):273PubMedPubMedCentralGoogle Scholar
  4. Boyer JS, Byrne P, Cassman KG, Cooper M, Delmer D, Greene T, Gruis F, Habben J, Hausmann NJ, Kenny N, Lafitte HR, Paszkiewicz S, Porter DO, Schlegel A, Schussler J, Setter T, Shanahan J, Sharp RE, Vyn T, Warner D, Gaffney J (2013) The U.S. drought of 2012 in perspective: a call to action. Glob Food Secur 2(3):139–143CrossRefGoogle Scholar
  5. Chen Z, Newman IM, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K + flux: a case study for barley. Plant Cell Environ 28(10):1230–1246CrossRefGoogle Scholar
  6. Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol 145(4):1714–1725CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30(12):2191–2198CrossRefPubMedGoogle Scholar
  8. Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109(42):16969–16973CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dou H, Xv K, Meng Q, Li G, Yang X (2015) Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant Cell Environ 38(1):61–72CrossRefPubMedGoogle Scholar
  10. Forster BP, Ellis RP, Moir J, Talamè V, Sanguineti MC, Tuberosa R, This D, Teulat-Merah B, Ahmed I, Mariy SAEE., Bahri H, Ouahabi A (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144(2):157–168CrossRefGoogle Scholar
  11. Francia E, Barabaschi D, Tondelli A, Laido` G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115(8):1083–1091CrossRefPubMedGoogle Scholar
  12. Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cattivelli L (2009) Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119(7):1335–1348CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold induced COR gene expression. Plant J 16(4):433–442CrossRefPubMedGoogle Scholar
  14. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8(2):024041CrossRefGoogle Scholar
  16. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648CrossRefPubMedPubMedCentralGoogle Scholar
  17. He X, Zeng J, Cao F, Mosaddek I, Zhang G, Vincze E, Wu F (2015) HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66(22):7405–7419CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3(9):816–821CrossRefGoogle Scholar
  19. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106CrossRefPubMedGoogle Scholar
  20. Jeknić Z, Pillman KA, Dhillon T, Skinner JS, Veisz O, Cuesta-Marcos A, Hayes PM, Jacobs AK, Chen TH, Stockinger EJ (2014) HvCBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol Biol 84(1–2):67–82CrossRefPubMedGoogle Scholar
  21. Khan MS (2011) The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnol Biotechnol Equip 25(3):2433–2442CrossRefGoogle Scholar
  22. Kizis D, Pagès M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30(6):679–689CrossRefPubMedGoogle Scholar
  23. Marozsántóth Z, Vashegyi I, Galiba G, Tóth B (2015) The cold response of CBF genes in barley is regulated by distinct signaling mechanisms. J Plant Physiol 181:42–49CrossRefGoogle Scholar
  24. Michael TP, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81CrossRefPubMedGoogle Scholar
  25. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–249CrossRefPubMedGoogle Scholar
  26. Nevo E, Chen GX (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33(4):670–685CrossRefPubMedGoogle Scholar
  27. Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B. and CBF3/DREB1A expression and plays a central role in, stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101(11):3985–3990CrossRefPubMedPubMedCentralGoogle Scholar
  28. Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104(52):21002CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138(1):341–351CrossRefPubMedPubMedCentralGoogle Scholar
  30. Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5(5):646–656CrossRefPubMedGoogle Scholar
  31. Pryor SC, Barthelmie RJ, Schoof JT (2013) High-resolution projections of climate-related risks for the Midwestern USA. Clim Res 56(1):61–79CrossRefGoogle Scholar
  32. Qiu L, Wu DZ, Ali S, Cai SG, Dai F, Wu F, Zhang GP (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theore Appl Genet 122(4):695–703CrossRefGoogle Scholar
  33. Rouse WR, Douglas MSV, Hecky RE, Hershey AE, Kling GW, Lesack L, Marsh P, McDonald M, Nicholson BJ, Roulet NT, Smol JP (2015) Effects of climate change on freshwater of arctic and subarctic North America. Hydrol Process 11(8):873–902CrossRefGoogle Scholar
  34. Sharabischwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61(1):261–273CrossRefGoogle Scholar
  35. Singh K, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress response. Curr Opin Plant Biol 5(5):430–436CrossRefPubMedGoogle Scholar
  36. Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59(4):533CrossRefPubMedGoogle Scholar
  37. Skinner JS, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112(5):832–842CrossRefPubMedGoogle Scholar
  38. Soltész A, Vágújfalvi A (2013) Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exp Bot 64(7):1849CrossRefPubMedPubMedCentralGoogle Scholar
  39. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory. Element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94(3):1035–1040CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67(6):589CrossRefPubMedGoogle Scholar
  41. Wang X, Wu D, Yang Q, Zeng J, Jin G, Chen ZH, Zhang G, Dai F (2016) Identification of mild freezing shock response pathways in barley based on transcriptome profiling. Front Plant Sci 7(1):106PubMedPubMedCentralGoogle Scholar
  42. Wu D, Qiu L, Xu L, Ye L, Chen M, Sun D, Chen Z, Zhang H, Jin X, Dai F, Zhang G (2011) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS ONE 6(7):e22938CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wu DZ, Cai SG, Chen MX, Ye LZ, Chen ZH, Zhang HT, Dai F, Wu FB, Zhang GP (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8(1):e55431CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33(2):373–383CrossRefPubMedGoogle Scholar
  45. Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133(2):910CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zeng J, He X, Quan X, Cai S, Han Y, Nadira UA, Zhang G (2015) Identification of the proteins associated with low potassium tolerance in cultivated and Tibetan wild barley. J Proteom 126:1CrossRefGoogle Scholar
  47. Zhang XZ (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. Research methodology of crop physiology. Agriculture Press, Beijing, pp 208–211Google Scholar
  48. Zhao J, Sun HY, Dai HX, Zhang GP, Wu FB (2010) Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172(3):395–403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Shuya Yin
    • 1
  • Yong Han
    • 1
  • Lu Huang
    • 1
  • Ye Hong
    • 1
  • Guoping Zhang
    • 1
  1. 1.Department of Agronomy, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations