Skip to main content
Log in

Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) is the most important stress hormone in the regulation of plant adaptation to drought. Owing to the chemical instability and rapid catabolism of ABA, ABA mimic 1 (AM1) is frequently applied to enhance drought resistance in plants, but the molecular mechanisms governed by AM1 on improving drought resistance in Brassica napus are not entirely understood. To investigate the effect of AM1 on drought resistance at the physiological and molecular levels, exogenous ABA and AM1 were applied to the leaves of two B. napus genotypes (Q2 and Qinyou 8) given progressive drought stress. The results showed that the leaves of 50 µM ABA- and AM1-treated plants shared over 60% differential expressed genes and 90% of the enriched functional pathways in Qinyou 8 under drought. AM1 affected the expression of the genes involved in ABA signaling; they down-regulated pyrabactin resistance/PYR1-like (PYR/PYLs), up-regulated type 2C protein phosphatases (PP2Cs), partially up-regulated sucrose non-fermenting 1-related protein kinase 2s (SnRK2s), and down-regulated ABA-responsive element (ABRE)-binding protein/ABRE-binding factors (AREB/ABFs). Additionally, AM1 treatment repressed the expression of photosynthesis-related genes, those mainly associated with the light reaction process. Moreover, AM1 decreased the stomatal conductance, the net photosynthetic rate, and the transpiration rate, but increased the relative water content in leaves and increased survival rates of two genotypes under drought stress. Our findings suggest that AM1 has a potential to improve drought resistance in B. napus by triggering molecular and physiological responses to reduce water loss and impair growth, leading to increased survival rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AM1:

ABA mimc1

AREB/ABFs:

ABA-responsive element (ABRE)-binding protein/ABRE-binding factors

DEGs:

Differentially expression genes

FC:

Field capacity

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

LEA:

Late-embryogenesis abundant

PP2C:

Type 2C protein phosphatase

PSII:

Photosystem II

PSI:

Photosystem I

PYR1:

Pyrabactin resistance 1

PYL:

PYR1-like

RNA-seq:

RNA sequencing

RWC:

Relative water content

SnRK2:

Sucrose non-fermenting 1-related protein kinase 2

WW:

Well-watered

WS:

Water-stressed

References

  • Bai G, Yang DH, Zhao Y, Si H, Yang F, Ma J, Gao XS, Wang ZM, Zhu JK (2013) Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Mol Biol 83:651–664

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose non-fermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Droillard MJ, Barbier-Brygoo H, Lauriere C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63:491–503

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretinyk E (2000) Responses to abiotic stress. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Cao M, Liu X, Zhang Y, Xue XQ, Zhou ZE, Melcher K, Gao P, Wang F, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong D, Zhu JK, Xu HE, Xu Y (2013) An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Jin R, Cao M, Liu X, Chan Z (2016) Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodondactylon). Plant Cell Tiss Organ Cult 125:231–240

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Chinnusamy V (2015) ABA receptors: prospects for enhancing biotic and abiotic stress tolerance of crops. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants: functional genomics perspectives. Springer, Dordrecht, pp 271–298

    Chapter  Google Scholar 

  • Dalal M, Inupakutika M (2014) Transcriptional regulation of ABA core signaling component genes in sorghum (Sorghum bicolor L. Moench). Mol Breed 34:1517–1525

    Article  CAS  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal K (2009) Abiotic stress and ABA-inducible group 4 LEA from Brassica napus in salt and drought tolerance. J Biotechnol 139:137–145

    Article  CAS  PubMed  Google Scholar 

  • Duan XW, Xie Y, Liu G, Gao XF, Lu HM (2010) Field capacity in black soil region, northeast China. Chin Geogra Sci 20:406–433

    Article  Google Scholar 

  • Endo A, Okamoto M, Koshiba T (2014) ABA biosynthetic and catabolic pathways. In: Zhang DP (ed) Abscisic acid: metabolism, transport and signaling. Springer, Dordrecht, pp 21–45

    Google Scholar 

  • Fan WQ, Zhao MY, Li SX, Bai X, Li J, Meng HW, Mu ZX (2016) Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol 16:1–14

    Article  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinase are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant cell Physiol 50:2123–2132

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plantarum 147:15–27

    Article  CAS  Google Scholar 

  • González-Guzmán M, Rodríguez L, Lorenzo-Orts L, Pons C, Sarrión-Perdigones A, Fernández MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodriguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 15:4451–4464

    Article  Google Scholar 

  • Goodger JQD (2014) Long-distance signals produced by water-stressed roots. In: Baluška F (ed) Long-distance systemic signaling and communication in plants. Springer, Dordrecht, pp 105–124

    Google Scholar 

  • Jiménez S, Dridi J, Gutiérrez D, Moret D, Irigoyen JJ, Moreno MA, Gogorcena Y (2013) Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol 33:1061–1075

    Article  PubMed  Google Scholar 

  • Jones AM (2016) A new look at stress: abscisic acid patterns and dynamics at high-resolution. New Phytol 210:38–44

    Article  CAS  PubMed  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012

    Article  CAS  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weini S, Batistic Q, DAngelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Sugimoto E, Shinozaki K (2014) Intertissue signal transfer of abscisic acid from vascular cells to guards cells. Plant Physiol 164:1587–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Seo PJ (2016) The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signaling by promoting protein turnover of MYB96. Nat Commun 7:12525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Wei F, Dong XY, Peng JH, Liu SY, Chen H (2011) Simultaneous analysis of multiple endogenous plant hormones in leaf tissue of oilseed rape by solide-phase extraction coupled with high-performance liquid chromatography-electrospray lonisation tandem mass spectrometry. Phytochem Anal 22:442–449

    Article  CAS  PubMed  Google Scholar 

  • Liang CZ, Wang YQ, Zhu YN, Tang JY, Hu B, Liu LC, Ou SJ, Wu HK, Sun XH, Chu JF, Chu CC (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA 111:10013–10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Xiong Z, Zheng J, Xu D, Zhu Z, Xiang J, Gan J, Raboanatahiry N, Yin Y, Li M (2016) Genome-wide identification, structural analysis and new insights into late embrogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep 6:24265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melcher K, Xu Y, Ng LM, Zhou XE, Soon FF, Chinnusamy V, Suino-Powell K, Kovach A, Tham FS, Cutler SR, Li J, Yong E-L, Zhu JK, Xu HE (2010) Identification and mechanism of ABA receptor antagonism. Nat Struct Mol Biol 17:1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzker ML (2010) Sequencing technologies–the next generation. Nat Rev Genet 11:31 – 46

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi M, Umezawa T, Nakashima K, Kidokoro S, Takasaki H, Fujta Y, Yamaguchi-Shinozaki K, Shinozaki K (2010) Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol 51:842–847

    Article  CAS  PubMed  Google Scholar 

  • Naeem MS, Dai LL, Ahmad F, Ahmad A, Li J, Zhang CL (2016) AM1 is a potential ABA substitute for drought tolerance as revealed by physiological and ultra-structural responses of oilseed rape. Acta Physiol Plant 38:1–10

    Article  CAS  Google Scholar 

  • Okamoto M, Peterson FC, Defries A, Park SY, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA 110:12132–12137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliano C, Saracco G, Barber J (2013) Structural, functional and auxiliary proteins of photosystem II. Photosynth Res 116:167–188

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christman A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rumpel S, Siebel JF, Diallo M, Fares C, Reijerse FJ, Lubitz W (2015) Structural insight into the complex of ferredoxin and [FeFe] hydrogenase from Chlamydomonas reinhardtii. Chem Bio Chem 16:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Márquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 50:575–588

    Article  Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  CAS  PubMed  Google Scholar 

  • Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MH, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Wang YP, Chen P, Ren J, Ji K, Li P, Dai SJ, Leng P (2011) Transcriptional regulation of SIPYL, SIPP2C, and SISnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 15:5659–5669

    Article  Google Scholar 

  • Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their selectivity and sensitivity. Plant J 61:25–35

    Article  CAS  PubMed  Google Scholar 

  • Thomas DS, Turner DW (2001) Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Sci Hortic 90:93–108

    Article  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:17306–17311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T, Nambara E, Onon Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major–hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182

    Article  CAS  PubMed  Google Scholar 

  • Varotto C, Pesaresi P, Meurer J, Oelmuller R, Steiner-Lange S, Salamini F, Leister D (2000) Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J 22:115–124

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Griffiths R, Ying J, Mccourt P, Huang Y (2009) Development of drought-tolerant canola (Brassica napus L.) through genetic modulation of ABA-mediated stomatal responses. Crop Sci 49:1539–1554

    Article  CAS  Google Scholar 

  • Wang YF, Duan C, Chen P, Li Q, Dai S, Sun L, Xu W, Wang C, Luo H, Wang Y, Leng P (2012) The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber. J Plant Physiol 169:1874–1882

    Article  CAS  PubMed  Google Scholar 

  • Wang DJ, Yang C, Dong L, Zhu JC, Wang JP, Zhang SF (2015) Comparative transcriptome analyses of drought-resistant and -susceptible Brassica napus L. and development of EST-SSR markers by RNA-SEq. J Plant Biol 58:259–269

    Article  CAS  Google Scholar 

  • Wang XH, Yin W, Wu JX, Chai LJ, Yi HL (2016) Effects of exogenous abscisic acid on the expression of citrus fruit repening-related genes and fruit ripening. Sci Hortic 201:175–183

    Article  CAS  Google Scholar 

  • Wilcox JC (1965) Time of sampling after an irrigation to determine field capacity of soil. Can J Soil Sci 45:171–176

    Article  Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormone responses in Thelluniella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZJ, Nakajima M, Suzuki Y, Yamaguchi I (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 129:1285–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Zhu LP, Pan C, Xu LM, Ke WD, Yang PF (2015a) Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera). Sci Rep 5:13059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Tang N, Xian ZQ, Li ZG (2015b) Two SnRK2 protein kinases genes play a negative regulatory role in the osmotic stress response in tomato. Plant Cell Tiss Organ Cult 122:421–434

    Article  CAS  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ 38:35–49

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Liu WJ, Zhang NH, Wang MB, Liang HG, Lin HH (2005) Effects of water stress on major photosystem II gene expression and protein metabolism in barley leaves. Physiol Plantarum 125:464–473

    Article  CAS  Google Scholar 

  • Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, Wu XX, Weeda S, Li L, Ren SX, Reiter R, Guo YD (2014) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Mason AS, Wu J, Liu S, Zhang XC, Luo T, Redden R, Batley J, Hu LY, Yan GJ (2015) Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front Plant Sci 6:1058

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 31571619 and 3151101074). We thanked Prof. Jiankang Zhu from Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences to give us chemical (AM1) support. We also thanked Dr. Naeem MS for his assistance in improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CLZ designed the experiment. JLX, LLD, and NM conducted the experiment and performed data analysis. JLX wrote the manuscript.

Corresponding author

Correspondence to Chun-Lei Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Chemical structures of ABA (a) and AM1 (b). (TIF 150 KB)

Fig. S2

The MS/MS spectrum of ABA in different chemical (ABA and AM1) treatments in two B. napus genotypes (Q2 and Qinyou 8) under well-watered (WW) and water-stressed (WS) conditions. (TIF 519 KB)

Fig. S3

Validation of the expression levels of novel genes using qRT-PCR. (TIF 417 KB)

Fig. S4

Gene Ontology (GO) classification of differentially expressed genes (DEGs) between the well-watered (WW) and the water-stressed (WS) conditions in B. napus genotype Qinyou 8. The most enriched 30 GO terms for down- and up-regulated genes between WW and WS treatment in Qinyou 8 (a, b) were separately presented. ‘*’ indicated that GO terms were significantly enriched at P<0.05, while ‘n.s.’ showed no significant difference. (TIF 459 KB)

Fig. S5

KEGG pathway analysis of differentially expressed genes (DEGs) between the well-watered (WW) and the water-stressed (WS) conditions in B. napus genotype (Qinyou 8). The most highly enriched 20 KEGG pathways for the down- and up-regulated genes between WW and WS treatment in Qinyou 8 (a, b) were separately presented. (TIF 391 KB)

Fig. S6

KEGG pathway analysis of differentially expressed genes (DEGs) affected by exogenous ABA and AM1 treatments in B. napus genotype Qinyou 8 in the water-stressed (WS) treatment twelve hours after first being applied with chemicals. The most highly enriched 20 KEGG pathways for the down- and up-regulated genes between the ABA treatment and the control (a, b), or between the AM1 treatment and the control (c, d) were separately presented. (TIF 739 KB)

Table S1

RNA amount obtained from each treatment for RNA-seq analysis. Table S2 List of primers for quantitative real-time PCR. Table S3 Summary of read data and mapping obtained from each sample. (DOCX 21 KB)

DataSheet S1

List of differentially expressed genes mentioned in the text. (XLSX 36 KB)

DataSheet S2

List of all differentially expressed genes between different treatments. (XLSX 1699 KB)

DataSheet S3

List of GO terms between different treatments. (XLSX 1547 KB)

DataSheet S4

List of KEGG pathways between different treatments. (XLSX 180 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, JL., Dai, LL., Ma, N. et al. Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regul 85, 73–90 (2018). https://doi.org/10.1007/s10725-018-0374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0374-8

Keywords

Navigation