Advertisement

Plant Growth Regulation

, Volume 85, Issue 1, pp 57–72 | Cite as

Characterization of a sterile dwarf mutant and the cloning of zeaxanthin epoxidase in Asian cotton (Gossypium arboreum L.)

  • Chuntai Wu
  • Baoliang Zhou
Original paper

Abstract

To document radiation damage incurred by nuclear DNA and understand the molecular mechanisms that control plant height, a sterile dwarf mutant (sd a ) derived from the Gossypium arboreum treated with 60Co γ-rays was characterized. A sequence analysis revealed that sd a included a partial deletion and a point mutation. The physiological changes and responses of the sd a mutant to exogenous hormones showed that the mutant’s chlorophyll contents, net photosynthetic rate, and abscisic acid levels were significantly reduced compared to those of wild-type. Using the sequence of a differentially expressed sequence tag encoding a zeaxanthin epoxidase (ZEP), a novel etiolation-associated gene, full-length cDNA was rapidly cloned using rapid amplification of cDNA ends. The full-length cDNA of this gene is 2414 bp, with a 2004-bp open reading frame encoding a putative ZEP of 667 amino acid residues that has a 73.421-kDa theoretical molecular mass and a 6.67 isoelectric point. The genomic sequence of GaZEP is 5233 bp, comprising 15 exons and 14 introns. The GaZEP promoter contains numerous cis-regulatory elements that are responsive to light, hormones, and stress. Real-time quantitative PCR indicated that GaZEP expression in the mutant was downregulated. The expression levels of GaZEP in roots and leaves were positively correlated with the root hair lengths and abscisic acid levels, respectively. Thus, in photosynthetic tissues, GaZEP mRNA levels might be regulated coordinately with variations in the abscisic acid levels. These results may assist in the further functional dissection of ZEP and in elucidating the molecular mechanism underlying sterile dwarfism in cotton.

Keywords

Gossypium arboretum Sda Radiation mutation Deletion Abscisic acid Zeaxanthin epoxidase (ZEP) gene 

Notes

Acknowledgements

We thank Prof. Baomin Wang (China Agricultural University, Beijing, China) for endogenous hormone measurements. This work was supported by grants from the China Agriculture Research System (No. CARS-34-YZ4), the National Natural Science Foundation of China (No. 30571184) and the National Key Technologies Research and Development (R&D) Program of China (No. 2004BA525B05-1).

Supplementary material

10725_2018_373_MOESM1_ESM.doc (238 kb)
Supplementary material 1 (DOC 238 KB)

References

  1. Ahmad S, Koya PK, Seshadri M (2013) Effects of chronic low level radiation in the population residing in the high level natural radiation area in Kerala, India: employing heritable DNA mutation studies. Mutat Res 751(2):91–95CrossRefPubMedGoogle Scholar
  2. Ahuja AK, Barber RC, Hardwick RJ, Weil MM, Genik PC, Brenner DJ, Dubrova YE (2008) The effects of Atm haploinsufficiency on mutation rate in the mouse germ line and somatic tissue. Mutagenesis 23(5):367–370CrossRefPubMedGoogle Scholar
  3. Anmarkrud JA, Kleven O, Augustin J, Bentz KH, Blomqvist D, Fernie KJ, Magrath MJ, Pärn H, Quinn JS, Robertson RJ, Szép T, Tarof S, Wagner RH, Lifjeld JT (2011) Factors affecting germline mutations in a hypervariable microsatellite: a comparative analysis of six species of swallows (Aves: Hirundinidae). Mutat Res 708(1–2):37–43CrossRefPubMedGoogle Scholar
  4. Audran C, Borel C, Frey A, Sotta B, Meyer C, Simonneau T, Marion-Poll A (1998) Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol 118:1021–1028CrossRefPubMedPubMedCentralGoogle Scholar
  5. Audran C, Liotenberg S, Gonneau M, North H, Frey A, Tap-Waksman K, Vartanian N, Marion-Poll A (2001) Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Aust J Plant Physiol 28:1161–1173Google Scholar
  6. Bai L, Zhou Y, Zhang XR, Song CP, Cao MQ (2007) Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis. Chin Sci Bull 52(8):1142–1145CrossRefGoogle Scholar
  7. Balmer LA, Beveridge DJ, Jazayeri JA, Thomson AM, Walker CE, Leedman PJ (2001) Identification of a novel AU–rich element in the 3ʹ untranslated region of epidermal growth factor receptor mRNA that is the target for regulated RNA–binding proteins. Mol Cell Biol 21:2070–2084CrossRefPubMedPubMedCentralGoogle Scholar
  8. Banilas G, Moressisl A, Nikoloudakis N, Hatzopoulos P (2005) Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Sci 168:547–555CrossRefGoogle Scholar
  9. Boldt L, Yellowlees D, Leggat W (2012) Hyperdiversity of genes encoding integral light-harvesting proteins in the dinoflagellate Symbiodinium sp. PLoS One 7(10):e47456CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cao X, Fan G, Deng M, Zhao Z, Dong Y (2014) Identification of genes related to Paulownia witches’ broom by AFLP and MSAP. Int J Mol Sci 15:14669–14683CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14(11):2723–2743CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheng W, Gao JS, Feng XX, Shao Q, Yang SX, Feng XZ (2016) Characterization of dwarf mutants and molecular mapping of a dwarf locus in soybean. J Integr Agr 15(10):2228–2236CrossRefGoogle Scholar
  13. Datta S, Kim CM, Pernas M, Pires ND, Proust H, Tam T, Vijayakumar P, Dolan L (2011) Root hairs: development, growth and evolution at the plant-soil interface. Plant Soil 346:1–14CrossRefGoogle Scholar
  14. De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11(9):434–439CrossRefPubMedGoogle Scholar
  15. Demers JE, del Mar Jiménez-Gasco M (2016) Evolution of nine microsatellite loci in the fungus Fusarium oxysporum. J Mol Evol 82(1):27–37CrossRefPubMedGoogle Scholar
  16. Dharmadhikari AV, Gambin T, Szafranski P, Cao W, Probst FJ, Jin W, Fang P, Gogolewski K, Gambin A, George-Abraham JK, Golla S, Boidein F, Duban-Bedu B, Delobel B, Andrieux J, Becker K, Holinski-Feder E, Cheung SW, Stankiewicz P (2014) Molecular and clinical analyses of 16q24.1 duplications involving FOXF1 identify an evolutionarily unstable large minisatellite. BMC Med Genet 15:128CrossRefPubMedPubMedCentralGoogle Scholar
  17. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984CrossRefPubMedPubMedCentralGoogle Scholar
  18. Falchi R, Zanon L, De Marco F, Nonis A, Pfeiffer A, Vizzotto G (2013) Tissue-specific and developmental expression pattern of abscisic acid biosynthetic genes in peach fruit: possible role of the hormone in the coordinated growth of seed and mesocarp. J Plant Growth Regul 32:519–532CrossRefGoogle Scholar
  19. Fuller RJ, Carman JG, Hess JR (2009) Nutrient and hormone levels in cotton ovules during embryony. Plant Cell Tiss Organ Cult 99:183–192CrossRefGoogle Scholar
  20. Gasteiger E, Gattiker A (2003) ExPasy: the proteomics server for in–depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grzegorski SJ, Chiari EF, Robbins A, Kish PE, Kahana A (2014) Natural variability of Kozak sequences correlates with function in a zebrafish model. PLoS ONE 9(9):e108475CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guan H, Dong Y, Liu C, He C, Liu C, Liu Q, Dong R, Li Y, Liu T, Wang L (2017) A splice site mutation in shrunken1-m causes the shrunken 1 mutant phenotype in maize. Plant Growth Regul 83(3):429–439CrossRefGoogle Scholar
  23. Hou X, Liang Y, He X, Shen Y, Huang Z (2013) A novel ABA-responsive TaSRHP gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thaliana. Plant Mol Biol Rep 31:791–801CrossRefGoogle Scholar
  24. Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787(1):3–14CrossRefPubMedGoogle Scholar
  25. Kiselev KV, Tyunin AP, Ogneva ZV, Dubrovina AS (2015) Age-associated alterations in the somatic mutation level in Arabidopsis thaliana. Plant Growth Regul 75(2):493–501CrossRefGoogle Scholar
  26. Kovalchuk O, Dubrova YE, Arkhipov A, Hohn B, Kovalchuk I (2000) Wheat mutation rate after Chernobyl. Nature 407:583–584CrossRefPubMedGoogle Scholar
  27. Lang GI, Parsons L, Gammie AE (2013) Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast. G3 3(9):1453–1465CrossRefPubMedPubMedCentralGoogle Scholar
  28. Latowski D, Burda K, Strzałka K (2000) A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase. J Theor Biol 206(4):507–514CrossRefPubMedGoogle Scholar
  29. Latowski D, Banaś AK, Strzałka K, Gabryś H (2007) Amino sugars: new inhibitors of zeaxanthin epoxidase, a violaxanthin cycle enzyme. J Plant Physiol 164(3):231–237CrossRefPubMedGoogle Scholar
  30. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li H, Luo J, Hemphill JK, Wang JT, Gould JH (2001) A rapid and high yielding DNA miniprep for cotton (Gossypium spp.). Plant Mol Biol Rep 19(2):183aCrossRefGoogle Scholar
  32. Li P, Dong H, Liu A, Liu J, Sun M, Wang G, Zhang S, Li Y, Mao S (2014) Diagnosis of premature senescence of cotton using SPAD value. Agric Sci 5:992–999Google Scholar
  33. Lind C, Dreyer I, López-Sanjurjo EJ, von Meyer K, Ishizaki K, Kohchi T, Lang D, Zhao Y, Kreuzer I, Al-Rasheid KA, Ronne H, Reski R, Zhu JK, Geiger D, Hedrich R (2015) Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr Biol 25(7):928–935CrossRefPubMedGoogle Scholar
  34. Liu J, Meng Y, Lv F, Chen J, Ma Y, Wang Y, Chen B, Zhang L, Zhou Z (2015) Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality. Front Plant Sci 6:747PubMedPubMedCentralGoogle Scholar
  35. Manova V, Gruszka D (2015) DNA damage and repair in plants–from models to crops. Front Plant Sci 6:885CrossRefPubMedPubMedCentralGoogle Scholar
  36. McAdam SA, Brodribb TJ, Ross JJ (2016) Shoot-derived abscisic acid promotes root growth. Plant Cell Environ 39(3):652–659CrossRefPubMedGoogle Scholar
  37. Mou HQ, Lu J, Zhu SF, Lin CL, Tian GZ, Xu X, Zhao WJ (2013) Transcriptomic analysis of paulownia infected by paulownia witches’-broom phytoplasma. PLoS ONE 8:e77217CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nishikata K, Cox RS 3rd, Shimoyama S, Yoshida Y, Matsui M, Makita Y, Toyoda T (2014) Database construction for PromoterCAD: synthetic promoter design for mammals and plants. ACS Synth Biol 3(3):192–196CrossRefPubMedGoogle Scholar
  39. Pan F, Meng Q, Luo S, Shen J, Chen B, Khan KY, Japenga J, Ma X, Yang X, Feng Y (2017) Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int J Phytoremediation 19(3):281–289CrossRefPubMedGoogle Scholar
  40. Pang AW, Migita O, Macdonald JR, Feuk L, Scherer SW (2013) Mechanisms of formation of structural variation in a fully sequenced human genome. Hum Mutat 34(2):345–354CrossRefPubMedGoogle Scholar
  41. Park MY, Kim SA, Lee SJ, Kim SY (2013) ATHB17 is a positive regulator of abscisic acid response during early seedling growth. Mol Cell 35:125–133CrossRefGoogle Scholar
  42. Parry AD, Griffiths A, Horgan R (1992) Abscisic acid biosynthesisin roots: II. The effects of water–stress in wild–type and abscisic acid–deficient (notabilis) plants of Lycopersicon esculentum Mill. Planta 187:192–197CrossRefPubMedGoogle Scholar
  43. Polak U, McIvor E, Dent SY, Wells RD, Napierala M (2013) Expanded complexity of unstable repeat diseases. Biofactors 39(2):164–175CrossRefPubMedGoogle Scholar
  44. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401CrossRefPubMedGoogle Scholar
  45. Ritz C, Ruminski W, Hougaard KS, Wallin H, Vogel U, Yauk CL (2011) Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation. Mutat Res 712(1–2):55–58CrossRefPubMedGoogle Scholar
  46. Roelfsema MR, Hedrich R, Geiger D (2012) Anion channels: master switches of stress responses. Trends Plant Sci 17(4):221–229CrossRefPubMedGoogle Scholar
  47. Roos J, Bejai S, Mozūraitis R, Dixelius C (2015) Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis. Plant J 81(4):572–585CrossRefPubMedGoogle Scholar
  48. Schwarz N, Armbruster U, Iven T, Brückle L, Melzer M, Feussner I, Jahns P (2015) Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids. Plant Cell Physiol 56(2):346–357CrossRefPubMedGoogle Scholar
  49. Sharp RE, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37CrossRefPubMedGoogle Scholar
  50. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590CrossRefPubMedGoogle Scholar
  51. Somers CM, Yauk CL, White PA, Parfett CL, Quinn JS (2002) Air pollution induces heritable DNA mutations. Proc Natl Acad Sci USA 99(25):15904–15907CrossRefPubMedPubMedCentralGoogle Scholar
  52. Song Y, Xiang F, Zhang G, Miao Y, Miao C, Song CP (2016) Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Front Plant Sci 7:181PubMedPubMedCentralGoogle Scholar
  53. Stanković D, Igić R, Šijačić-Nikolić M, Vilotić D, Pajević S (2009) Contents of the heavy metals nickel and lead in leaves of Paulownia elongata SY Hu and Paulownia fortunei Hems. Arch Biol Sci 61:827–834 (in Serbia)CrossRefGoogle Scholar
  54. Tracy SR, Black CR, Roberts JA, Dodd IC, Mooney SJ (2015) Using X-ray computed tomography to explore the role of abscisic acid in moderating the impact of soil compaction on root system architecture. Environ Exp Bot 110:11–18CrossRefGoogle Scholar
  55. Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6(270):rs8CrossRefPubMedGoogle Scholar
  56. Umezawa T, Takahashi F, Shinozaki K (2014) Phosphorylation networks in the abscisic acid signaling pathway. Enzymes 35:27–56CrossRefPubMedGoogle Scholar
  57. Vatter T, Neuhäuser B, Stetter M, Ludewig U (2015) Regulation of length and density of Arabidopsis root hairs by ammonium and nitrate. J Plant Res 128(5):839–483CrossRefPubMedGoogle Scholar
  58. Wu C (2008) Isolation and characterization of a sterile-dwarf mutant and cloning of its related genes in asian cotton (Gossypium arboreum L.). Dissertation, Nanjing Agricultural University, pp 67–72Google Scholar
  59. Wu C, Zhou B, Zhang T (2009) Isolation and characterization of a sterile-dwarf mutant in Asian cotton (Gossypium arboreum L.). J Genet Genom 36:343–353CrossRefGoogle Scholar
  60. Xie C, Wang C, Wang X, Yang X (2013) Two modified RNA extraction methods compatible with transcript profiling and gene expression analysis for cotton roots. Prep Biochem Biotechnol 43(5):500–511CrossRefPubMedGoogle Scholar
  61. Xue J, Wang S, Zhang P, Zhu F, Ren X, Liu C, Zhang X (2015) On the role of physiological substances, abscisic acid and its biosynthetic genes in seed maturation and dormancy of tree peony (Paeonia ostii ‘Feng Dan’). Sci Hortic 182:92–101CrossRefGoogle Scholar
  62. Yang C, Zhu J, Jiang Y, Wang X, Gu M, Wang Y, Kang H, Fan X, Sha L, Zhang H, Xuan P, Zhou Y (2014) 100 Gy 60 Co γ-ray induced novel mutations in tetraploid wheat. Sci World J 2014:725813Google Scholar
  63. Yauk CL, Fox GA, McCarry BE, Quinn JS (2000) Induced minisatellite germline mutations in herring gulls (Larus argentatus) living near steel mills. Mutat Res 452:211–218CrossRefPubMedGoogle Scholar
  64. Yu R, Lai Y, Hartwell HJ, Moeller BC, Doyle-Eisele M, Kracko D, Bodnar WM, Starr TB, Swenberg JA (2015) Formation, accumulation, and hydrolysis of endogenous and exogenous formaldehyde-induced DNA damage. Toxicol Sci 146(1):170–182CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhang J, Wu YT, Guo WZ, Zhang TZ (2000) Fast screening of SSR markers in cotton with PAGE/siver staining. Cotton Sci Sin 12:267–269Google Scholar
  66. Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66(16):4863–4871CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Agriculture Ministry Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research InstituteChinese Academy of Tropical Agricultural Sciences (CATAS)DanzhouPeople’s Republic of China
  2. 2.National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research InstituteNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations