Advertisement

Plant Growth Regulation

, Volume 84, Issue 2, pp 261–273 | Cite as

Comprehensive evaluating of wild and cultivated emmer wheat (Triticum turgidum L.) genotypes response to salt stress

  • Kewei Feng
  • Licao Cui
  • Shuzuo Lv
  • Jianxin Bian
  • Meng Wang
  • Weining Song
  • Xiaojun Nie
Original paper
  • 264 Downloads

Abstract

Emmer wheat as the progenitor of common wheat, holds the genetic potentiality for improvement of wheat yield, quality and stress tolerance such as drought and salt. To comprehensively evaluate the salt tolerance of emmer wheat, a total of 30 traits including growth, physiology and photosynthesis related as well as K+ and Na+ content of 30 wild emmer and 14 durum wheat accessions were systematically investigated and compared between normal and saline conditions. Salt tolerance index (STI) based on multiple regression analysis of these traits was calculated and five wild emmer accessions showed high salt tolerance, which could be used as valuable resource for wheat salt tolerance improvement. Furthermore, wild emmer genotypes showed wider trait performance variation compared to durum wheat, indicating the higher genetic diversity in wild emmer wheat. Then, shoot Na+ content, shoot K+/Na+ ratio, root length and root surface area were identified as suitable indexes for salt tolerance evaluation. Na+ exclusion mechanism was found to be playing an important role in response to salt stress in emmer wheat. The salt tolerance in emmer wheat was systematically characterized here, which not only provided the elite germplasm for wheat improvement, but also provided the efficient method and some useful indexes for salt tolerance assessing.

Keywords

Emmer wheat Salt tolerance Na+ K+/Na+ ratio Multiple regression analysis 

Abbreviations

STI

Salt tolerance index based on TWD

Chlo

Chlorophyll content (SPAD-values)

Tiller

Tiller number

SDW

Shoot dry weight (g)

RDW

Root dry weight (g)

TDW

Total dry weight (g)

R_S

Root/shoot ratio

SFW

Shoot fresh weight (g)

RFW

Root fresh weight (g)

TFW

Total fresh weight (g)

RWC_shoot

Relative water content of shoot (%)

RWC_root

Relative water content of root (%)

RWC_total

Relative water content (%)

Root_len

Root length (cm)

Root_Sur

Root surface area (cm2)

Root_Diam

Root diameter (mm)

Root_Volu

Root volume (cm3)

SRL

Specific root length (cm g−1)

SSA

Specific root surface area (cm2 g−1)

TD

Tissue density of root (g/cm3)

Pn

Photosynthetic rate [μmol (CO2) m−2 s−1)

Trmmol

Transpiration rate (mmol m−2 s−1)

Gs

Stomatal conductance [μmol (H2O) m−2 s−1]

Ci

Internal CO2 concentration (μmol mol−1)

WUE

Water use efficiency of leaf (μmol mol−1)

shootK

K+ content of shoot (mg g−1)

shootNa

Na+ content of shoot (mg g−1)

rootK

K+ content of root (mg g−1)

rootNa

Na+ content of root (mg g−1)

shootK_Na_R

K+/Na+ ratio of shoot

root_K_Na_R

K+/Na+ ratio of root

Notes

Acknowledgements

All authors are grateful to Dr. Pingchuan Deng for his help on root data collection and also thankful to the anonymous reviewers for their valuable and constructive comments. This work was mainly supported by the National Natural Science Foundation of China (Grant Nos. 31401373 and 31571647), and partially supported and the Fundamental Research Funds for the Central Universities of China (Grant No. 2452015003).

Author contributions

FKW and CLC performed the whole experiments, statistical analysis and also wrote the paper. LSZ contributed to trait investigation and manuscript revision. BJX and WM contributed to greenhouse work and Na+ and K+ content measurement. SWN reviewed the manuscript. NXJ conceived this study and revised the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

10725_2017_337_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1241 KB)
10725_2017_337_MOESM2_ESM.xlsx (145 kb)
Supplementary material 2 (XLSX 144 KB)

References

  1. Anschutz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687. doi: 10.1016/j.jplph.2014.01.009 CrossRefPubMedGoogle Scholar
  2. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246. doi: 10.1111/j.1365-3040.2005.01364.x CrossRefGoogle Scholar
  3. Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shiabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255. doi: 10.1093/jxb/erm284 CrossRefPubMedGoogle Scholar
  4. Cherel I, Lefoulon C, Boeglin M, Sentenac H (2014) Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot 65:833–848. doi: 10.1093/jxb/ert402 CrossRefPubMedGoogle Scholar
  5. Chhipa BR, Lal P (1995) Na/K ratios as the basis of salt tolerance in wheat. Aust J Agr Res 46:533–539. doi: 10.1071/Ar9950533 CrossRefGoogle Scholar
  6. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078. doi: 10.1093/jxb/erj124 CrossRefPubMedGoogle Scholar
  7. De Leon TB, Linscombe S, Gregorio G, Subudhi PK (2015) Genetic variation in Southern USA rice genotypes for seedling salinity tolerance. Front Plant Sci 6:374. doi: 10.3389/fpls.2015.00374 PubMedPubMedCentralGoogle Scholar
  8. Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+, content. Plant Growth Regul 79:391–399CrossRefGoogle Scholar
  9. Dvorak J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171:323–332. doi: 10.1534/genetics.105.041632 CrossRefPubMedPubMedCentralGoogle Scholar
  10. El-Hendawy SE, Hu YC, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron 22:243–253. doi: 10.1016/j.eja.2004.03.002 CrossRefGoogle Scholar
  11. FAO (2010) FAO land and plant nutrition management service: http://www.faoorg/ag/agl/agll/spush. Assessed 1 Mar 2017
  12. Farissi M, Faghire M, Bargaz A, Bouizgaren A, Makoudi B, Sentenac H, Ghoulam C (2014) Growth, nutrients concentrations, and enzymes involved in plants nutrition of alfalfa populations under saline conditions. J Agr Sci Tech-Iran 16:301–314Google Scholar
  13. Fox J, Leeuw JD, Zeileis A (2005) The R commander: a basic-statistics graphical user interface to R. J Stat Softw 14:288–301Google Scholar
  14. Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na(+) concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498. doi: 10.1111/j.1365-3040.2007.01726.x CrossRefPubMedGoogle Scholar
  15. Ginestet C (2011) ggplot2: elegant graphics for data analysis. J R Stat Soc A 174:245–245. doi: 10.1111/j.1467-985X.2010.00676_9.x CrossRefGoogle Scholar
  16. Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565. doi: 10.1111/j.1365-3040.2009.02056.x CrossRefPubMedGoogle Scholar
  17. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefGoogle Scholar
  18. Huang L et al (2016) Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annu Rev Phytopathol 54:279–301. doi: 10.1146/annurev-phyto-080614-120254 CrossRefPubMedGoogle Scholar
  19. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547. doi: 10.1104/pp.106.086538 CrossRefPubMedPubMedCentralGoogle Scholar
  20. James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947. doi: 10.1093/jxb/err003 CrossRefPubMedGoogle Scholar
  21. Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76:25–40CrossRefGoogle Scholar
  22. Ma LQ, Zhou EF, Huo NX, Zhou RH, Wang GY, Jia JZ (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109–117. doi: 10.1007/s10681-006-9247-8 CrossRefGoogle Scholar
  23. Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218. doi: 10.1023/A:1024553303144 CrossRefGoogle Scholar
  24. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  25. Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agr Res 51:69–74. doi: 10.1071/Ar99057 CrossRefGoogle Scholar
  26. Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi: 10.1093/jxb/erj100 CrossRefPubMedGoogle Scholar
  27. Munns R et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360-U173. doi: 10.1038/nbt.2120 CrossRefGoogle Scholar
  28. Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution, and application in breeding. Theor Appl Genet 77:421–455. doi: 10.1007/BF00305839 CrossRefPubMedGoogle Scholar
  29. Nevo E, Chen GX (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685. doi: 10.1111/j.1365-3040.2009.02107.x CrossRefPubMedGoogle Scholar
  30. Nevo E, Gorham J, Beiles A (1992) Variation for 22Na uptake in wild emmer wheat, triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J Exp Bot 43(4):511–518CrossRefGoogle Scholar
  31. Nevo E, Krugman T, Beiles A (1993) Genetic-resources for salt tolerance in the wild progenitors of wheat (Triticum-Dicoccoides) and Barley (Hordeum-Spontaneum) in Israel. Plant Breed 110:338–341. doi: 10.1111/j.1439-0523.1993.tb00599.x CrossRefGoogle Scholar
  32. Oyiga BC, Sharma RC, Shen J, Baum M, Ogbonnaya FC, Leon J, Ballvora A (2016) Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J Agron Crop Sci 202:472–485. doi: 10.1111/jac.12178 CrossRefGoogle Scholar
  33. Pires IS, Negrao S, Oliveira MM, Purugganan MD (2015) Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiol Plant 155:43–54. doi: 10.1111/ppl.12356 CrossRefPubMedGoogle Scholar
  34. Qadir M et al (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295. doi: 10.1111/1477-8947.12054 CrossRefGoogle Scholar
  35. Qiu L et al (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695–703. doi: 10.1007/s00122-010-1479-2 CrossRefPubMedGoogle Scholar
  36. Ren J et al (2013) SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol Biol 13:169. doi: 10.1186/1471-2148-13-169 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. doi: 10.1016/j.copbio.2013.12.004 CrossRefPubMedGoogle Scholar
  38. Shavrukov Y, Langridge P, Tester M (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breeding Sci 59:671–678CrossRefGoogle Scholar
  39. Shavrukov Y, Langridge P, Tester M, Nevo E (2010) Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breeding Sci 60:426–435. doi: 10.1270/jsbbs.60.426 CrossRefGoogle Scholar
  40. Shen Q, Fu L, Qiu L, Xue F, Zhang GP, Wu D (2016) Time-course of ionic responses and proteomic analysis of a Tibetan wild barley at early stage under salt stress. Plant Growth Regul 1:1–11Google Scholar
  41. Tajbakhsh M, Zhou MX, Chen ZH, Mendham NJ (2006) Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust J Exp Agric 46:555–562. doi: 10.1071/Ea05026 CrossRefGoogle Scholar
  42. Talei D, Valdiani A, Yusop MK, Abdullah MP (2013) Estimation of salt tolerance in Andrographis paniculata accessions using multiple regression model. Euphytica 189:147–160. doi: 10.1007/s10681-012-0782-1 CrossRefGoogle Scholar
  43. Xie WL, Nevo E (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614. doi: 10.1007/s10681-008-9703-8 CrossRefGoogle Scholar
  44. Yang CW et al (2014) Evolution of physiological responses to salt stress in hexaploid wheat. Proc Natl Acad Sci USA 111:11882–11887. doi: 10.1073/pnas.1412839111 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zeng L, Shannon MC, Grieve CM (2002) Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 127:235–245. doi: 10.1023/A:1020262932277 CrossRefGoogle Scholar
  46. Zhu M, Shabala S, Shabala L, Fan Y, Zhou MX (2016) Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. J Agron Crop Sci 202:115–124. doi: 10.1111/jac.12122 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Kewei Feng
    • 1
  • Licao Cui
    • 1
  • Shuzuo Lv
    • 3
  • Jianxin Bian
    • 1
  • Meng Wang
    • 1
  • Weining Song
    • 1
    • 2
  • Xiaojun Nie
    • 1
  1. 1.State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement CenterNorthwest A&F UniversityYanglingChina
  2. 2.Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and ForestryYanglingChina
  3. 3.Institute of BiotechnologyLuoyang Academy of Agriculture and Forestry ScienceLuoyangChina

Personalised recommendations