Plant Growth Regulation

, Volume 84, Issue 2, pp 207–223 | Cite as

Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere

Review paper

Abstract

Regulatory response and interaction of Bradyrhizobium and arbuscular mycorrhizal fungi (AMF) play a vital role in rhizospheric soil processes and productivity of soybean (Glycine max L.). Nitrogen (N) and phosphorus (P) are essential nutrients for plant growth and productivity, the synergistic interaction(s) of AMF and Bradyrhizobium along with rhizospheric beneficial microorganisms stimulate soybean growth and development through enhanced mineral nutrient acquisition (N and P) and improved rhizosphere environment. Such interactions are crucial, especially under low-input eco-friendly agricultural cropping systems, which rely on biological processes rather than agrochemicals to maintain soil quality, sustainability, and productivity. Furthermore, enhancement of N-fixation by root nodules along with AMF-mediated synergism improves plant P nutrition and uptake, and proliferation of phosphate-solubilizing fungi. However, the genetic and/or allelic diversity among native strains, their genes/enzymes and many environmental factors (e.g., soil organic matter, fertilizers, light, temperature, soil moisture, and biotic interactors) affect the interactions between AMF and Bradyrhizobium. New information is available regarding the genetic composition of elite soybean inoculant strains in maximizing symbiotic performance, N-fixing capabilities and depending on N and P status the host-mediated regulation of root architecture. Overall, for sustainable soybean production systems, a deeper understanding of the interaction effects of Bradyrhizobium and AMF co-inoculation are expected in the future, so that optimized combinations of microorganisms can be applied as effective soil inoculants for plant growth promotion and fitness. The objective of this review is to offer insights into the mechanistic interactions of AMF and Bradyrhizobium and rhizopheric soil health, and elucidate the role of environmental factors in regulating growth, development and sustainable soybean productivity.

Keywords

Biofertilizer Biotic and abiotic interactors Co-inoculation Environmental factors Rhizosphere Soybean productivity Symbiotic interactions 

Notes

Acknowledgements

We gratefully acknowledge Prof. Rattan Lal, School of Environment and Natural Resources, The Ohio State University for helpful discussions, suggestions and critical reading of the manuscript. We thank Dr. Veena Devi Ganeshan, Department of Plant Pathology, The Ohio State University for help in conceptualizing the figure on soybean rhizosphere.

Supplementary material

10725_2017_334_MOESM1_ESM.docx (416 kb)
Supplementary material 1 (DOCX 415 KB)
10725_2017_334_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 KB)
10725_2017_334_MOESM3_ESM.docx (18 kb)
Supplementary material 3 (DOCX 17 KB)

References

  1. Adesemoye AO, Kloeppe JW (2009) Plant-microbe interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12PubMedCrossRefGoogle Scholar
  2. Aibara I, Miwa K (2014) Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant Cell Physiol 55:2027–2036PubMedCrossRefGoogle Scholar
  3. Almeida JPF, Hartwig UA, Frehner M et al (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297PubMedGoogle Scholar
  4. Aranjuelo I, Arrese-Igor C, Molero G (2014) Nodule performance within a changing environmental context. J Plant Physiol 171:1076–1090PubMedCrossRefGoogle Scholar
  5. Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ashoka P, Meena RS, Kumar S et al (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441CrossRefGoogle Scholar
  7. Atkinson D, Watson CA (2000) The beneficial rhizosphere: a dynamic entity. Appl Soil Ecol 15:99–104CrossRefGoogle Scholar
  8. Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  9. Ballhorn DJ, Schadler M, Elias JD et al (2016) Friend or foe—light availability determines the relationship between mycorrhizal fungi, rhizobia and Lima Bean (Phaseolus lunatus L.). PLoS One 11:e0154116PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bandyopadhyay P, Bhuyan SK, Yadava PK et al (2017) Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma 254:617–626PubMedCrossRefGoogle Scholar
  11. Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351PubMedCrossRefGoogle Scholar
  12. Barea JM, Werner D, Azcon-Aguilar C et al (2005) Interactions of arbuscular mycorrhiza and nitrogen fixing symbiosis in sustainable agriculture. In: Werner D, Newton WE (eds) Agriculture, forestry, ecology and the environment. Kluwer Academic Publishers, DordrechtGoogle Scholar
  13. Barrett G, Campbell CD, Fitter AH et al (2011) The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Appl Soil Ecol 48:102–105CrossRefGoogle Scholar
  14. Behm JE, Kiers ET (2014) A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. J Ecol. 102:315–327CrossRefGoogle Scholar
  15. Bellieny-Rabelo D, Oliveira AE, Venancio TM (2013) Impact of whole-genome and tandem duplications in the expansion and functional Diversification of the FBox family in legumes (Fabaceae). PLoS ONE 8:e55127PubMedPubMedCentralCrossRefGoogle Scholar
  16. Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97:248–253CrossRefGoogle Scholar
  17. Berruti A, Lumini E, Ballestrini R et al (2015) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559PubMedGoogle Scholar
  18. Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialized niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–371PubMedCrossRefGoogle Scholar
  19. Bonneau L, Huguet S, Wipf D et al (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202PubMedCrossRefGoogle Scholar
  20. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  21. Cely MVT, de Oliveira AG, de Freitas DF et al (2016) Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front Microbiol 7:720PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chagnon PL, Bainard LD (2015) Using molecular biology to study mycorrhizal fungal community ecology: limits and perspectives. Plant Signal Behav 10:e1046668PubMedPubMedCentralGoogle Scholar
  23. Chang C, Nasir F, Ma L et al (2017) Molecular communication and nutrient transfer of arbuscular mycorrhizal fungi, symbiotic nitrogen-fixing bacteria, and host plant in tripartite symbiosis. In: Sulieman S, Tran LS (eds) Legume nitrogen fixation in soils with low phosphorus availability. Springer, ChamGoogle Scholar
  24. Chebrolu KK, Fristschi FB, Ye S et al (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:28CrossRefGoogle Scholar
  25. Clough TJ, Condron LM, Kammann C et al (2013) A review of biochar and soil nitrogen dynamics. Agronomy 2:275–293CrossRefGoogle Scholar
  26. Corradi C, Brachmann A (2017) Fungal mating in the most widespread plant symbionts?. Trends Plant Sci 22:175–183PubMedCrossRefGoogle Scholar
  27. Coskan A, Gok M, Onac I et al (2003) The effects of rhizobium and mycorrhiza interactions on N2-fixation, biomass and P uptake. J Cukurova Uni Facul Agri 18:35–44Google Scholar
  28. Coskan A, Gok M, Erol H et al (2010) Humic + fulvic acid as a bio-stimulator on biological nitrogen fixation. 9. Symposiums des Verband deutsch-türkischer Agrarund Naturwissenschaftler (VDTAN). Marz, Mustafa Kemal Univ. Hatay, Turkey, pp 22–27Google Scholar
  29. Delamuta JRM, Ribeiro RA, Menna P et al (2012) Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. Braz J Microbiol. 43: 698–10Google Scholar
  30. Dijkstra FA, Cheng W (2007) Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biol Biochem 39:2264–2274CrossRefGoogle Scholar
  31. Ding X, Zhang S, Wang R et al (2016) AM fungi and rhizobium regulate nodule growth, phosphorous (P) uptake, and soluble sugar concentration of soybeans experiencing P deficiency. J Pant Nutr 39:1917–1925Google Scholar
  32. Dogan K, Gok M, Coskan A (2010) Effects of bacteria inoculation and iron application on biomass, yield and nitrogen contents in Cukurova region. 5th National Plant Nutrition and Fertilization Congress, Izmir, 15–17 September 2010Google Scholar
  33. Dube KG (2011) Effect of organic manures, biofertilizers and growth regulators in alone and combination treatments on the growth of leaves in Stevia rebaudiana Bertoni. Asiatic J Biotech Resour 2:403–413Google Scholar
  34. Friberg S (2001) Distribution and diversity of arbuscular mycorrhizal fungi in traditional agriculture on the Niger inland delta, Mali, West Africa. CBM’s Skriftserie 3:53–80Google Scholar
  35. Fu X (2016) New insights into plant nutrient signaling and adaptation to fluctuating environments. J Genet Genom 43:621–622CrossRefGoogle Scholar
  36. Gadkar V, David-Schwartz R, Kunit T et al (2001) Arbuscular mycorrhiza fungi colonization factors involved in host recogination. Plant Physiol 127:1493–1499PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57CrossRefGoogle Scholar
  38. Gao X, Lu X, Wu M et al (2012) Co-Inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. PLoS ONE 7:e33977PubMedPubMedCentralCrossRefGoogle Scholar
  39. Garbeva P, Veen JAV, Elsas JDV (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev Phytopathol 42:243–270CrossRefGoogle Scholar
  40. Garnett T, Conn V, Kaiser B (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32:1272–1283PubMedCrossRefGoogle Scholar
  41. Gavrin A, Chiasson D, Ovchinnikova E et al (2016) VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytol 210:1011–1021PubMedCrossRefGoogle Scholar
  42. Genre A, Russo G (2016) Does a common pathway transduce symbiotic signals in plant–microbe interactions? Front Plant Sci 7:96PubMedPubMedCentralCrossRefGoogle Scholar
  43. Giri B, Mukerji KG (2004) Mycorrhizal inoculants alleviate salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312PubMedCrossRefGoogle Scholar
  44. Gobbato E, Marsh JF, Vernie T et al (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241PubMedCrossRefGoogle Scholar
  45. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106CrossRefGoogle Scholar
  46. Hardarson G, Atkins C (2003) Optimizing biological N2 fixation by legumes in farming systems. Plant Soil 252:41–54CrossRefGoogle Scholar
  47. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7CrossRefGoogle Scholar
  48. Herman DJ, Johnson KK, Jaeger CH et al (2006) Root influence on nitrogen mineralization and nitrification in Avena barbata rhizosphere soil. Soil Sci Soc America J 70:1504–1511CrossRefGoogle Scholar
  49. Hill GT, Mitkowski NA, Aldrich-Wolfe L et al (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Microbe 15:25–36CrossRefGoogle Scholar
  50. Hirsch PR, Mauchline TM (2012) Who’s who in the plant root microbiome?. Nature Biotechnol 30:961–962CrossRefGoogle Scholar
  51. Hocking PJ (2001) Organic acids exuded from roots in phosphorus uptake and aluminium tolerance of plants in acid soils. Adv Agron 74:63–97CrossRefGoogle Scholar
  52. Houlton BZ, Wang YP, Vitousek PM et al (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature. 454:327–330PubMedCrossRefGoogle Scholar
  53. Ibiang YB, Mitsumoto H, Sakamoto K (2017) Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese, iron, phosphorus, and polyphenols in soybean (Glycine max (L.) Merr.) under excess zinc. Environ Exp Bot 137:1–13CrossRefGoogle Scholar
  54. Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101:4871–4881PubMedCrossRefGoogle Scholar
  55. Isler E, Coskan A (2009) Effect of different bacterium (Bradyrhizobium japonicum) inoculation techniques on biological nitrogen fixation and yield of soybean. Tarim Bilimleri Dergisi 15:324–331CrossRefGoogle Scholar
  56. Itakura M, Saeki K, Omuri H et al (2009) Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. The ISME J 3:326–339PubMedCrossRefGoogle Scholar
  57. Ivanov S, Federova EE, Limpens E et al (2012) Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc Natl Acad Sci USA 109:8316–8321PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jakobsen I, Gazey C, Abbott IK (2001) Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol 149:95–103CrossRefGoogle Scholar
  59. Jiang Y, Wang W, Xie Q et al (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 1172–1175Google Scholar
  60. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  61. Johnson D, Martin F, Cairney JWG et al (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 194:614–628PubMedCrossRefGoogle Scholar
  62. Joshi R, Wani SH, Singh B et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029PubMedPubMedCentralCrossRefGoogle Scholar
  63. Keerio MI (2001) Nitrogenase activity of soybean root nodules inhibited after heat stress. Online J Biol Sci 1:297–300Google Scholar
  64. Kennedy AC, Smith KL (2001) Soil microbial diversity and the sustainability of agricultural soil. Plant Soil 170:75–86CrossRefGoogle Scholar
  65. Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236CrossRefGoogle Scholar
  66. Kiers ET, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  67. Kikuchi Y, Hijikata N, Ohtomo R et al (2016) Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol 211:1202–1208PubMedCrossRefGoogle Scholar
  68. Konvalinkova T, Jansa J (2016) Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci 7:782PubMedPubMedCentralCrossRefGoogle Scholar
  69. Krishnapriya V, Pandey R (2016) Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop Pasture Sci 67:1096–1109Google Scholar
  70. Kuklinsky-Sobral J, Araújo WL, Mendes R et al (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol l 6:1244–1251CrossRefGoogle Scholar
  71. Latef AAHA, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low-temperature stress. Acta Phys Plantarum 33:1217–1225CrossRefGoogle Scholar
  72. Lenoir I, Fontaine J, Sahraoui ALH (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15PubMedCrossRefGoogle Scholar
  73. Li B, Li YY, Wu HM et al (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA 113:6496–6501PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu ZL, Li YJ, Hou HY (2013) Differences in the arbuscular mycorrhizal fungi-improved rice resistance to allow temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Phys Bioch 7:87–95CrossRefGoogle Scholar
  75. Liu Z, Li Y, Ma L et al (2015) Coordinated regulation of arbuscular mycorrhizal fungi and soybean MAPK pathway genes improved mycorrhizal soybean drought tolerance. Mol Plant Microbe Interact 28:408–419PubMedCrossRefGoogle Scholar
  76. Luginbuehl LH, Menard GN, Kurup S et al (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178PubMedCrossRefGoogle Scholar
  77. Ma Y, Oliveira RS, Freitas H et al (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918PubMedPubMedCentralGoogle Scholar
  78. Marzban Z, Faryabi E, Torabian S (2017) Effects of arbuscular mycorrhizal fungi and Rhizobium on ion content and root characteristics of green bean and maize under intercropping. Acta agriculturae Slovenica 109:79–88CrossRefGoogle Scholar
  79. Massalha H, Korenblum E, Tholl D et al (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807PubMedCrossRefGoogle Scholar
  80. Meena RS (2013a) Response to different nutrient sources on green gram (Vigna radiata L.) productivity. Indian J Ecol 40:353–31555Google Scholar
  81. Meena RS (2013b) Resources conservation agriculture—a review. Ann Biol 29:301–306Google Scholar
  82. Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6:344–348Google Scholar
  83. Meena RS, Dhaka Y, Bohra JS et al (2015a) Influence of bioinorganic combinations on yield, quality and economics of mung bean. Am J Exp Agri 8:159–166Google Scholar
  84. Meena RS, Yadav RS, Meena H et al (2015b) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515CrossRefGoogle Scholar
  85. Meena RS, Gogoi N, Kumar S (2017) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359CrossRefGoogle Scholar
  86. Meng L, Zhang A, Wang F et al (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339PubMedPubMedCentralGoogle Scholar
  87. Millar NS, Bennet AE (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182:625–641PubMedPubMedCentralCrossRefGoogle Scholar
  88. Miransari M, Bahrami HA, Rejali F et al (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1106CrossRefGoogle Scholar
  89. Monier B, Peta V, Mensah J, Bücking H (2017) Inter- and intraspecific fungal diversity in the arbuscular mycorrhizal symbiosis. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza—function, diversity, state of the art. Springer, ChamGoogle Scholar
  90. Mutava RN, Prince SJK, Syed NH et al (2015) Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant Physiol Biochem 86:109–120PubMedCrossRefGoogle Scholar
  91. Nardi S, Concheri G, Pizzegelho D et al (2000) Soil organic matter mobilization by root exudates. Chemosphere 41:653–658PubMedCrossRefGoogle Scholar
  92. Nouri E, Breullin-Sessoms F, Feller U et al (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9(3):e90841PubMedPubMedCentralCrossRefGoogle Scholar
  93. O’Brian MR, Vance CP, VandenBosch KA (2009) Legume focus: model species sequenced, mutagenesis approaches extended, and debut of a new model. Plant Physiol 151:969PubMedPubMedCentralCrossRefGoogle Scholar
  94. Omirou M, Fasoula DA, Ioannides IM (2016) Bradyrhizobium inoculation alters indigenous AMF community assemblages and interacts positively with AMF inoculum to improve cowpea performance. Appl Soil Ecol 108:381–389CrossRefGoogle Scholar
  95. Opik M, Davison J (2016) Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecol. 24:106–113CrossRefGoogle Scholar
  96. Ordonez YM, Fernandez BR, Lara LS et al (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS ONE 11:e0154438PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ossler JN, Zielinski CA, Heath KD (2015) Tripartite mutualism: Facilitation or trade-off s between rhizobial and mycorrhizal symbionts of legume hosts. Am J Bot 102:1332–1341PubMedCrossRefGoogle Scholar
  98. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  99. Parsons R, Stanforth A, Raven JA et al (1993) Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ. 16: 125 – 36Google Scholar
  100. Penuelas J, Poulter B, Sardans J et al (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934PubMedGoogle Scholar
  101. Perez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol. 90: 635 – 44Google Scholar
  102. Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49CrossRefGoogle Scholar
  103. Rascovan N, Carbonetto B, Perrig D et al (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084PubMedPubMedCentralCrossRefGoogle Scholar
  104. Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 102–133Google Scholar
  105. Remigi P, Zhu J, Young JPW et al (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75PubMedCrossRefGoogle Scholar
  106. Rogers ED. Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98PubMedCrossRefGoogle Scholar
  107. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 152:569–572Google Scholar
  108. Ruiz-Lozano JM, Collados C, Barea JM et al (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502CrossRefGoogle Scholar
  109. Sadowsky MJ (2005) Soil stress factors influencing symbiotic nitrogen fixation. Werner D, Newton WE (eds), Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 89–112CrossRefGoogle Scholar
  110. Saito M (2000) Symbiotic exchange of nutrients in arbuscular mycorrhizas: transport and transfer of phosphorus. In Kapulnik Y, Douds DD, Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 85–106CrossRefGoogle Scholar
  111. Saito M, Kato T, Saito M (1994) Effects of low temperature and shade on relationships between nodulation, vesicular-arbuscular mycorrhizal infection, and shoot growth of soybeans. Biol Fertil Soils 17:206–211CrossRefGoogle Scholar
  112. Sanders IR, Rodriguez A (2016) Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. The ISME J 10:2780–2786PubMedCrossRefGoogle Scholar
  113. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340PubMedCrossRefGoogle Scholar
  114. Schlaeppi K, Bender SF, Mascher F et al (2016) High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol 212:780–791PubMedCrossRefGoogle Scholar
  115. Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56PubMedCrossRefGoogle Scholar
  116. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183PubMedCrossRefGoogle Scholar
  117. Shahzad T, Chenu C, Genet P et al (2015) Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol Biochem 80:146–155CrossRefGoogle Scholar
  118. Simpson MJ, Simpson AJ (2017) NMR of soil organic matter. Encyclopedia of Spectroscopy and Spectrometry (3rd edn). Elsevier, Amsterdam, pp 170–174CrossRefGoogle Scholar
  119. Singh BK, Munro S, Potts JM et al (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155CrossRefGoogle Scholar
  120. Sinnathamby S, Douglas-Mankin KR, Craige C (2017) Field-scale calibration of crop-yield parameters in the soil and waterassessment tool (SWAT). Agric Water Manag 180:61–69CrossRefGoogle Scholar
  121. Siqueira AF, Ormeno-Orillo E, Souza RC et al (2014) Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genom 15:420CrossRefGoogle Scholar
  122. Smalla K, Wieland G, Buchner A et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751PubMedPubMedCentralCrossRefGoogle Scholar
  123. Stougaard J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124:531–540PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century-old manuretreated agroecosystem. Appl Environ Microbiol 70:5868–5874PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sylvia D, Fuhrmann J, Hartel P et al (2005) Principles and applications of soil microbiology. Pearson, New JerseyGoogle Scholar
  126. Tan Z, Hurek T, Vinuesa P et al (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67:3655–3664PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tilman D, Cassman KG, Matson PA et al (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedCrossRefGoogle Scholar
  128. Toljander JF, Lindahl BD, Paul LR et al (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304PubMedCrossRefGoogle Scholar
  129. Uzokwe VNE, Asafo-Adjei B, Fawole I et al (2017) Generation mean analysis of phosphorus-use efficiency in freely nodulating soybean crosses grown in low-phosphorus soil. Plant Breeding 136:139–146CrossRefGoogle Scholar
  130. van Overbeek LS, Saikkonen K (2016) Impact of bacterial–fungal interactions on the colonization of the endosphere. Trends Plant Sci 21:230–242PubMedCrossRefGoogle Scholar
  131. van der Wal A, de Boer W (2017) Dinner in the dark: illuminating drivers of soil organic matter decomposition. Soil Biol Biochem 105:45–48CrossRefGoogle Scholar
  132. van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plants. New Phytol 157:569–578CrossRefGoogle Scholar
  133. Vijayakumar V, Liebisch G, Buer B et al (2016) Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicusGlomus intraradices mycorrhizal symbiosis. Plant Cell Environ 39:393–315PubMedCrossRefGoogle Scholar
  134. Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562PubMedCrossRefGoogle Scholar
  135. Wang X, Pan Q, Chen F et al (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181,PubMedCrossRefGoogle Scholar
  136. Wang X, Khodadadi E, Fakheri B et al (2017) Organ-specific proteomics of soybean seedlings under flooding and drought stresses. J Proteom 162:62–72CrossRefGoogle Scholar
  137. Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. CRC Crit Rev Plant Sci 32:1–20CrossRefGoogle Scholar
  138. Wittwer RA, Dorn B, Jossi W et al (2017) Cover crops support ecological intensification of arable cropping systems. Sci Rep 7:41911PubMedPubMedCentralCrossRefGoogle Scholar
  139. Xue L, Cui H, Buer B et al (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854–871PubMedPubMedCentralCrossRefGoogle Scholar
  140. Young JWP (2015) Genome diversity in arbuscular mycorrhizal fungi. Curr Opin Plant Biol 26:113–119PubMedCrossRefGoogle Scholar
  141. Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annu Rev Plant Biol 63:283–305PubMedCrossRefGoogle Scholar
  142. Zgadzaj R, Garrido-Oter R, Jensen DB et al (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci USA 113:E7996–E8005PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
  2. 2.School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA
  3. 3.College of Food, Agricultural and Environmental Sciences, Department of Plant PathologyThe Ohio State UniversityColumbusUSA

Personalised recommendations