Plant Growth Regulation

, Volume 84, Issue 2, pp 225–236 | Cite as

Activation of gibberellin 20-oxidase 2 undermines auxin-dependent root and root hair growth in NaCl-stressed Arabidopsis seedlings

Original paper


Although salt stress mainly disturbs plant root growth by affecting the biosynthesis and signaling of phytohormones, such as gibberellin (GA) and auxin, the exact mechanisms of the crosstalk between these two hormones remain to be clarified. Indole-3-acetic acid (IAA) is a biologically active auxin molecule. In this study, we investigated the role of Arabidopsis GA20-oxidase 2 (GA20ox2), a final rate-limiting enzyme of active GA biosynthesis, in IAA-directed root growth under NaCl stress. Under the NaCl treatment, seedlings of a loss-of-function ga20ox2-1 mutant exhibited primary root and root hair elongation, altered GA4 accumulation, and decreased root Na+ contents compared with the wild-type, transgenic GA20ox2-complementing, and GA20ox2-overexpression plant lines. Concurrently, ga20ox2-1 alleviated the tissue-specific inhibition of NaCl on IAA generation by YUCCAs, IAA transport by PIN1 and PIN2, and IAA accumulation in roots, thereby explaining how NaCl increased GA20ox2 expression in shoots but disrupted primary root and root hair growth in wild-type seedlings. In addition, a loss-of-function pin2 mutant impeded GA20ox2 expression, indicating that GA20ox2 function requires PIN2 activity. Thus, the activation of GA20ox2 retards IAA-directed primary root and root hair growth in response to NaCl stress.


GA20ox2 NaCl IAA PIN1/2 Primary root or root hair length 



We thank Dr. Jian Xu (National University of Singapore, Singapore) for providing PIN2-GFP and DR5-GUS seeds. This work was supported by funding from the National Natural Science Foundation of China to Jing Jiang (Grant Numbers 30971509 and 31271510). We thank Lesley Benyon, PhD, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.

Supplementary material

10725_2017_333_MOESM1_ESM.docx (85 kb)
Supplementary material 1 (DOCX 85 KB)


  1. Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GT, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19(14):1188–1193CrossRefPubMedGoogle Scholar
  2. Bai L, Ma X, Zhang G, Song S, Zhou Y, Gao L, Miao Y, Song CP (2014) A receptor-like kinase mediates ammonium homeostasis and is important for the polar growth of root hairs in Arabidopsis. Plant Cell 26(4):1497–1511CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benkova E, Hejatko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69(4):383–396CrossRefPubMedGoogle Scholar
  4. Carrera E, Prat S (1999) Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in Potato. Plant Physiol 119(2):765–774CrossRefPubMedPubMedCentralGoogle Scholar
  5. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2013) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217(1):67–75CrossRefGoogle Scholar
  6. Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140(6):1147–1151CrossRefPubMedGoogle Scholar
  7. Di DW, Zhang C, Luo P, An CW, Guo GQ (2016) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78(3):275–285CrossRefGoogle Scholar
  8. Dinneny JR (2014) A gateway with a guard: how the endodermis regulates growth through hormone signaling. Plant Sci 214:14–19CrossRefPubMedGoogle Scholar
  9. Duan L, Dietrich D, Ng CH, Chan PM, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25(1):324–341CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eilon S, Roy W, Yi Z, Cristina C, Eirini K, Joanne C, Tsien RY, Mark E (2013) Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci USA 110(12):4834–4839CrossRefGoogle Scholar
  11. Fambrini M, Mariotti L, Parlanti S, Picciarelli P, Salvini M, Ceccarelli N, Pugliesi C (2011) The extreme dwarf phenotype of the GA-sensitive mutant of sunflower, dwarf2, is generated by a deletion in the ent-kaurenoic acid oxidase1 (HaKAO1) gene sequence. Plant Mol Biol 75(4–5):431–450CrossRefPubMedGoogle Scholar
  12. Fernando A, Aimone P, Stefano T, Julieta M, Maida RB, José Luis GM, Fabio F, Veronica G, Kater MM, George C (2014) SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc Natl Acad Sci USA 111(26):2760–2769CrossRefGoogle Scholar
  13. Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142(2):553–563CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421(6924):740–743CrossRefPubMedGoogle Scholar
  15. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1999) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226–2230CrossRefGoogle Scholar
  16. Garcíamartínez JL, Lópezdiaz I, Sánchezbeltrán MJ, Phillips AL, Ward DA, Gaskin P, Hedden P (1997) Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 33(6):1073–1084CrossRefGoogle Scholar
  17. Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22(3):623–639CrossRefPubMedGoogle Scholar
  18. Han S, Fang L, Ren X, Wang W, Jiang J (2014) MPK6 controls H2O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings. New Phytol 205(2):695–706CrossRefPubMedGoogle Scholar
  19. Jiang C, Fu X (2008) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol 145(4):1460–1470CrossRefGoogle Scholar
  20. Kasahara H (2015) Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem 80(1):34–42PubMedGoogle Scholar
  21. Kuraishi S, Muir RM (1962) Increase in diffusible auxin after treatment with gibberellin. Science 137(3532):760–761CrossRefPubMedGoogle Scholar
  22. Kurepin LV, Park JM, Lazarovits G, Hüner NPA (2015) Involvement of plant stress hormones in Burkholderia phytofirmans-induced shoot and root growth promotion. Plant Growth Regul 77(2):179–187CrossRefGoogle Scholar
  23. Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168(1):343–356CrossRefPubMedPubMedCentralGoogle Scholar
  24. Marhavý P, Montesinos JC, Abuzeineh A, Van DD, Vermeer JE, Duclercq J, Rakusová H, Nováková P, Friml J, Geldner N (2016) Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation. Genes Dev 30(4):471–483CrossRefPubMedPubMedCentralGoogle Scholar
  25. Moubayidin L, Perilli S, Ioio RD, Mambro RD, Costantino P, Sabatini S (2010) The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 20(12):1138–1142CrossRefPubMedGoogle Scholar
  26. Niu S, Li Z, Yuan H, Pan F, Chen X, Li W (2013) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64(11):3411–3424CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100(5):2987–2991CrossRefPubMedPubMedCentralGoogle Scholar
  28. Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590CrossRefPubMedPubMedCentralGoogle Scholar
  29. Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108(3):1049–1057CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol 166(1):5–22CrossRefPubMedPubMedCentralGoogle Scholar
  31. Plackett AR, Powers SJ, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M, Jikumaru Y, Benlloch R, Nilsson O, Ruiz-Rivero O, Phillips AL, Wilson ZA, Thomas SG, Hedden P (2012) Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell 24(3):941–960CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rebers M (1999) Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J 17(3):241–250CrossRefPubMedGoogle Scholar
  33. Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53(3):488–504CrossRefPubMedGoogle Scholar
  34. Sakakibara H (2005) Cytokinin biosynthesis and regulation. Vitam Horm 72:271–287CrossRefPubMedGoogle Scholar
  35. Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR, Jikumaru Y, Kamiya Y, Franzen R, Schmelzer E, Porri A, Sacharowski S, Gratkowska DM, Zugaj DL, Taff A, Zalewska A, Archacki R, Davis SJ, Coupland G, Koncz C, Jerzmanowski A, Sarnowski TJ (2013) DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. Plant Physiol 163(1):305–317CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y (2012) COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1-and PIN2-dependent auxin transport in Arabidopsis. Development 139(18):3402–3412CrossRefPubMedGoogle Scholar
  37. Tanimoto E (2012) Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Ann Bot 110(2):373–381CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ubeda-Tomas S, Federici F, Casimiro I, Beemster GT, Bhalerao R, Swarup R, Doerner P, Haseloff J, Bennett MJ (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19(14):1194–1199CrossRefPubMedGoogle Scholar
  39. Vermeer JE, von Wangenheim D, Barberon M, Lee Y, Stelzer EH, Maizel A, Geldner N (2014) A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343(6167):178–183CrossRefPubMedGoogle Scholar
  40. Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C (2011) Gibberellin regulates PIN-formed abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 23(6):2184–2195CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214(1):153–157CrossRefPubMedGoogle Scholar
  42. Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134(2):769–776CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55(4):652CrossRefPubMedGoogle Scholar
  44. Yu G, Rui W, Choon Wei W, Fei X, Xueliang W, Chan PMY, Cliff T, Lina D, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Proc Natl Acad Sci USA 25(6):2132–2154Google Scholar
  45. Zhao Y, Wang T, Zhang W, Li X (2011) SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol 189(4):1122–1134CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Shufang Lv
    • 1
    • 2
  • Dongyue Yu
    • 1
  • Qingqing Sun
    • 1
  • Jing Jiang
    • 1
  1. 1.State Key Laboratory of Cotton Biology, College of Life SciencesHenan UniversityKaifengChina
  2. 2.College of AgricultureHenan University of Science and TechnologyLuoyangChina

Personalised recommendations