Skip to main content
Log in

Effects of the maize C4 phosphoenolpyruvate carboxylase (ZmPEPC) gene on nitrogen assimilation in transgenic wheat

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitrogen (N) is the primary limiting factor for crop growth, development, and productivity. Transgenic technology is a straightforward strategy for improving N assimilation in crops. The present study assessed the effects of maize C4 phosphoenolpyruvate carboxylase (ZmPEPC) gene overexpression on N assimilation in three independent transgenic lines and wild-type (WT) wheat (Triticum aestivum L.). The transgenic wheat lines depicted ZmPEPC overexpression and higher PEPC enzyme activity relative to that in the WT. The leaves of the transgenic wheat lines subjected to low N treatment showed an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) expression, content, and carboxylase activity. The transgenic wheat lines also depicted an upregulation of genes associated with the anaplerotic pathway for the TCA cycle, suggesting that more carbon (C) skeleton material is being allocated for N assimilation under low N conditions. Furthermore, ZmPEPC expression in transgenic wheat lines induced the upregulated of genes associated primary N metabolism, including TaNR, TaGS2, TaGOGAT, TaAspAT, and TaASN1. The average total free amino acid content in the transgenic wheat lines was 48.18% higher than that in the WT, and asparagine (Asn), glutamine (Gln), aspartic acid (Asp), and serine (Ser) were also markedly enhanced. In addition, elementary analysis showed that N and C content, and the biomass of the transgenic wheat lines increased with low N treatment. Yield trait analysis indicated that ZmPEPC overexpression improved grain yield by increasing 1000-grain weight. In conclusion, ZmPEPC overexpression in wheat could modulate C metabolism, significantly improve N assimilation, enhances growth, and improves yield under low N conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M (2002) Overexpression of C4 PEPC caused O2– insensitive photosynthesis in transgenic rice plants. Plant Sci 162(2):257–265

    Article  CAS  Google Scholar 

  • Bernard SM, Moller AL, Dionisio G, Kichey T, Jahn TP, Dubois F, Baudo M, Lopes MS, Terce-Laforgue T, Foyer CH, Parry MA, Forde BG, Araus JL, Hirel B, Schjoerring JK, Habash DZ (2008) Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol 67(1–2):89–105

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Camp PJ, Huber SC, Burke JJ, Moreland DE (1982) Biochemical changes that occur during senescence of wheat leaves : I. basis for the reduction of photosynthesis. Plant Physiol 70(6):1641–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champigny ML, Foyer C (1992) Nitrate activation of cytosolic protein kinases diverts photosynthetic C from sucrose to amino Acid biosynthesis: basis for a new concept. Plant Physiol 100(1):7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LM, Li KZ, Miwa T, Izui K (2004) Overexpression of a cyanobacterial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta 219(3):440–449

    Article  CAS  PubMed  Google Scholar 

  • Chollet R, Vidal J, O’Leary MH (1996) PHOSPHOENOLPYRUVATE CARBOXYLASE: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47:273–298

    Article  CAS  PubMed  Google Scholar 

  • Eckardt NA, Snyder GW, Portis AR Jr, Orgen WL (1997) Growth and photosynthesis under high and low irradiance of Arabidopsis thaliana antisense mutants with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase activase content. Plant Physiol 113(2):575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaju O, Allard V, Martre P, Snape JW, Heumez E, Legouis J, Moreau D, Bogard M, Griffiths S, Orford S (2011) Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crop Res 123(2):139–152

    Article  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327(5968):1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Han LL, Xu WG, Hu L, Li Y, Qi XL, Zhang JH, Zhang HF, Wang YX (2014) Preliminary study on the physiological characteristics of transgenic wheat with maize C4-pepc gene in field conditions. Cereal Res Commun 42(1):70–80

    Article  CAS  Google Scholar 

  • Hatch MD, Slack CR (1966) Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J 101(1):103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirel B, Gallais A (2006) RuBisCO synthesis, turnover and degradation: some new thoughts on an old problem. New Phytol 169(3):445–448

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Li Y, Xu W, Zhang Q, Zhang L, Qi X, Dong H (2012) Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4 phosphoenolpyruvate carboxylase gene. Plant Breed 131(3):385–391

    Article  CAS  Google Scholar 

  • Jeanneau M, Vidal J, Gousset-Dupont A, Lebouteiller B, Hodges M, Gerentes D, Perez P (2002) Manipulating PEPC levels in plants. J Exp Bot 53(376):1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Ji BH, Zhu SQ, Jiao DM, Su Qin Z, De Mao J (2004) Photosynthetic C4-microcyle in transgenic rice plant lines expressing the maize C4-photosynthetic enzymes. Acta Agronomica Sinica 6(30):536–543

    Google Scholar 

  • Kaiser WM, Weiner H, Huber SC (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant 105(2):384–389

    Article  Google Scholar 

  • Kant S, Seneweera S, Rodin J, Materne M, Burch D, Rothstein SJ, Spangenberg G (2012) Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies. Front Plant Sci 3:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku MS, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17(1):76–80

    Article  CAS  PubMed  Google Scholar 

  • Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R (2011) Introduction of the ZmDof1 gene into rice enhances C and N assimilation under low-N conditions. Plant Biotechnol J 9(8):826–837

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Kontturi M, Young AT (1989) Photosynthesis by flag leaves of wheat in relation to protein, ribulose bisphosphate carboxylase activity and N supply. J Exp Bot 40(1):43–52

    Article  CAS  Google Scholar 

  • Lebouteiller B, Gousset-Dupont A, Pierre J-N, Bleton J, Tchapla A, Maucourt M, Moing A, Rolin D, Vidal J (2007) Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana. Plant Sci 172(2):265–272

    Article  CAS  Google Scholar 

  • Lepiniec L, Vidal J, Chollet R, Gadal P, Crétin C (1994) Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Sci 99(2):111–124

    Article  CAS  Google Scholar 

  • Li W, Hao N, Ge Q, Zhang Q (1999) Advance in study on C4 pathway in C3 plant. Chin Bull Bot 16(2):97–106

    Google Scholar 

  • Li Y, Gao Y, Xu X, Shen Q, Guo S (2009) Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J Exp Bot 60(8):2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Makino A, Mae T, Ohira K (1987) Variations in the contents and kinetic properties of ribulose-1,5-bisphosphate carboxylases among rice species. Plant Cell Physiol 28(5):799–804

    Article  CAS  Google Scholar 

  • Makino A, Nakano H, Mae T (1994) Responses of ribulose-1,5-bisphosphate carboxylase, cytochrome f, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis. Plant Physiol 105(1):173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA 107(11):5226–5231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer E, O’Leary MH (1987) Anapleurotic CO2 fixation by phosphoenolpyruvate carboxylase in C3 plants. Plant Physiol 84(1):58–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476(7358):43–50

    Article  CAS  PubMed  Google Scholar 

  • O’Leary MH (1982) Phosphoenolpyruvate Carboxylase: an enzymologist’s view. Annu Rev Plant Physiol 33(1):297–315

    Article  Google Scholar 

  • O’Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436(1):15–34

    Article  PubMed  Google Scholar 

  • Pasqualini S, Ederli L, Piccioni C, Batini P, Bellucci M, Arcioni S, Antonielli M (2001) Metabolic regulation and gene expression of root phosphoenolpyruvate carboxylase by different N sources. Plant Cell Environ 24(4):439–447

    Article  CAS  Google Scholar 

  • Qi X, Xu W, Zhang J, Guo R, Zhao M, Hu L, Wang H, Dong H, Li Y (2017) Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma 254(2):1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Qin N, Xu W, Hu L, Li Y, Wang H, Qi X, Fang Y, Hua X (2016) Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma 253(6):1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Xie W, Lian X, Zhang Q (2009) Molecular analyses of the rice glutamate dehydrogenase gene family and their response to N and phosphorous deprivation. Plant Cell Rep 28(7):1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Radchuk R, Radchuk V, Gotz KP, Weichert H, Richter A, Emery RJ, Weschke W, Weber H (2007) Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks. Plant J 51(5):819–839

    Article  CAS  PubMed  Google Scholar 

  • Rademacher T, Hausler RE, Hirsch HJ, Zhang L, Lipka V, Weier D, Kreuzaler F, Peterhansel C (2002) An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J 32(1):25–39

    Article  CAS  PubMed  Google Scholar 

  • Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H (2004) Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol J 2(3):211–219

    Article  CAS  PubMed  Google Scholar 

  • Ruan CJ, Shao HB, Teixeira DSJA (2012) A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering. Crit Rev Biotechnol 32(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Sentoku N, Taniguchi M, Sugiyama T, Ishimaru K, Ohsugi R, Takaiwa F, Toki S (2000) Analysis of the transgenic tobacco plants expressing Panicum miliaceum aspartate aminotransferase genes. Plant Cell Rep 19(6):598–603

    Article  CAS  Google Scholar 

  • Shen WJ, Chen GX, Xu JG, Jiang Y, Liu L, Gao ZP, Ma J, Chen X, Chen TH, Lv CF (2015) Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Photosynthetica 53(3):436–446

    Article  CAS  Google Scholar 

  • Shi J, Yi K, Liu Y, Xie L, Zhou Z, Chen Y, Hu Z, Zheng T, Liu R, Chen Y, Chen J (2015) Phosphoenolpyruvate carboxylase in Arabidopsis leaves plays a crucial role in carbon and nitrogen metabolism. Plant Physiol 167(3):671–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) RuBisCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53(370):959–970

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-M, Xu W-G, Hu L, Zhang L, Li Y, Du X-H (2012) Expression of maize gene encoding C4-pyruvate orthophosphate dikinase (PPDK) and C4-phosphoenolpyruvate carboxylase (PEPC) in transgenic Arabidopsis. Plant Mol Biol Rep 30(6):1367–1374

    Article  CAS  Google Scholar 

  • Wang Y, Fu B, Pan L, Chen L, Fu X, Li K (2013) Overexpression of Arabidopsis Dof1. GS1 and GS2 enhanced nitrogen Aassimilation in transgenic tobacco grown under low-nitrogen conditions. Plant Mol Biol Rep 31(4):886–900

    Article  CAS  Google Scholar 

  • Wang Y, Xu W, Hu L, Li Y, Qi X, Wang H, Li X, Weigang X, Lin H, Yan LI, Xueli Q, Huiwei W, Xiaobo L (2016) Effect of pepc gene from maize on photosynthesis-related genes expression in transgenic wheat. J Triticeae Crops 1(36):1–8

    Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101(20):7833–7838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xu W, Wang H, Hu L, Li Y, Qi X, Zhang L, Li C, Hua X (2014) Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma 251(5):1163–1173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Genetically Modified Organisms Breeding Major Projects of China (Grant No. 2016ZX08002005-004), the Excellent Youth Science and Technology Foundation of Henan Academy of Agricultural Sciences (Grant No. 2016YQ02), the Fundamental Research and Advanced Technology Project of Henan Province (Grant No. 162300410163), and the Henan Province Research Program of Application and Advanced Technology (Grant No. 132300410005) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Xu, W., Hu, L. et al. Effects of the maize C4 phosphoenolpyruvate carboxylase (ZmPEPC) gene on nitrogen assimilation in transgenic wheat. Plant Growth Regul 84, 191–205 (2018). https://doi.org/10.1007/s10725-017-0332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0332-x

Keywords

Navigation