Plant Growth Regulation

, Volume 81, Issue 2, pp 265–275 | Cite as

Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.)

  • Yuange Wang
  • Huaihua Liu
  • Shuping Wang
  • Hongjie Li
Original paper


YUCCA is an important enzyme which catalyzes a key rate-limiting step in the tryptophan-dependent pathway for auxin biosynthesis and implicated in several processes during plant growth and development. Genome wide analyses of YUCCA genes have been performed in Arabidopsis, rice, tomato, and Populus, but have never been characterized in soybean, one of the most important oil crops in the world. In this study, 22 GmYUCCA genes (GmYUCCA1-22) were identified and named based on soybean whole-genome sequence. Phylogenetic analysis of YUCCA proteins from Glycine max, Arabidopsis, Oryza sativa, tomato, and Populus euphratica revealed that GmYUCCA proteins could be divided into four subfamilies. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that GmYUCCA genes have diverse expression patterns in different tissues and under various stress treatments. Compared to the wild type (WT), the transgenic GmYUCCA5 Arabidopsis plants displayed downward curling of the leaf blade margin, evident apical dominance, higher plant height, and shorter length of siliques. Our results provide a comprehensive analysis of the soybean YUCCA gene family and lay a solid foundation for further experiments in order to functionally characterize these gene members during soybean growth and development.


Soybean GmYUCCA Expression profiles Stress response Transgene 



This work was kindly supported by the project of Modern Seed Industry Enterprise Science and Technology Development of Shandong (SDKJ2012QF003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10725_2016_203_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 KB)
10725_2016_203_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 KB)
10725_2016_203_MOESM3_ESM.pptx (147 kb)
Supplementary material 3 (PPTX 146 KB)
10725_2016_203_MOESM4_ESM.pptx (149 kb)
Supplementary material 4 (PPTX 148 KB)
10725_2016_203_MOESM5_ESM.pptx (169 kb)
Supplementary material 5 (PPTX 169 KB)
10725_2016_203_MOESM6_ESM.pptx (146 kb)
Supplementary material 6 (PPTX 145 KB)
10725_2016_203_MOESM7_ESM.pptx (146 kb)
Supplementary material 7 (PPTX 146 KB)


  1. Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 120:1790–1799CrossRefGoogle Scholar
  3. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  4. Delker C, Raschke A, Quint M (2008) Auxin dynamics: the dazzling complexity of a small molecule’s message. Planta 227:929–941CrossRefPubMedGoogle Scholar
  5. Di DW, Zhang CG, Luo P, An CW, Guo GQ (2016) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78:275–285CrossRefGoogle Scholar
  6. Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574CrossRefPubMedGoogle Scholar
  7. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Hernández M, Pérez JA (2007) Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J Plant Growth Regul 26:329–340CrossRefGoogle Scholar
  8. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2011) Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: the ToFZY gene family. Plant Physiol Biochem 49:782–791CrossRefPubMedGoogle Scholar
  9. Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P (2008) sparse inflorescence1 encodes a monocotspecific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci 105:15196–15201CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ghanashyam C, Jain M (2009) Role of auxin-responsive genes in biotic stress responses. Plant Signal Behav 4:846–848CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS, Bohnert HJ, Hasegawa PM, Yun DJ, Bressan RA (2007) yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxinrelated phenotypes. Plant Physiol 145:722–735CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kim JI, Baek D, Park HC, Chun HJ, Oh DH, Lee MK, Cha JY, Kim WY, Kim MC, Chung WS, Bohnert HJ, Lee SY, Bressan RA, Lee SW, Yun DJ (2013) Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol Plant 6:337–349CrossRefPubMedGoogle Scholar
  14. Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386CrossRefPubMedGoogle Scholar
  15. Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee M, Jung JH, Han DY, Seo PJ, Park WJ, Park CM (2012) Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235:923–938CrossRefPubMedGoogle Scholar
  17. Leyser O (2010) The power of auxin in plants. Plant Physiol 154:501–505CrossRefPubMedPubMedCentralGoogle Scholar
  18. Leyser O (2011) Auxin, self-organization, and the colonial nature of plants. Curr Biol 21:R331–R337CrossRefPubMedGoogle Scholar
  19. Li W, Liu B, Yu L, Feng D, Wang H, Wang J (2009) Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol 9:90CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li N, Yin N, Niu ZB, Hui WR, Song J, Huang CL, Wang HG, Kong L, Feng DS (2014) Isolation and characterization of three TaYUC10 genes from wheat. Gene 546:187–194CrossRefPubMedGoogle Scholar
  21. Liu H, Ying YY, Zhang L, Gao QH, Li J, Zhang Z, Fang JG, Duan K (2012) Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (Fragaria × ananassa Duch.) Plant Cell Rep 31:1425–1435CrossRefPubMedGoogle Scholar
  22. Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci 110:15485–15490CrossRefPubMedPubMedCentralGoogle Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DeltaDeltaC(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  24. Marsch-Martínez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329CrossRefPubMedGoogle Scholar
  26. Park CM (2007) Auxin homeostasis in plant stress adaptation response. Plant Signal Behav 2:306–307CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sauer M, Balla J, Luschnig C, Wisniewska J, Reinöhl V, Friml J, Benková E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911CrossRefPubMedPubMedCentralGoogle Scholar
  28. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefPubMedGoogle Scholar
  29. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  30. Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JN, Souer E, Koes R (2002) FLOOZY of petunia is a flavin monooxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev 16:753–763CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang W, Xu B, Wang H, Li J, Huang H, Xu L (2011) YUCCA genes are expressed in response to leaf adaxial–abaxial juxtaposition and are required for leaf margin development. Plant Physiol 157:1805–1819CrossRefPubMedPubMedCentralGoogle Scholar
  32. Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellins and other hormones. Plant Physiol 144:1240–1246CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wojcikowska B, Jaskola K, Gasiorek P, Meus M, Nowak K, Gaj MD (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238:425–440CrossRefPubMedPubMedCentralGoogle Scholar
  34. Woodward C, Bemis SM, Hill EG, Sawa S, Koshiba T, Torii KU (2005) Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol 139:192–203CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ye X, Kang BG, Osburn LD, Li Y, Cheng ZM (2009) Identification of the flavin-dependent monooxygenase-encoding YUCCA gene family in Populus trichocarpa and their expression in vegetative tissues and in response to hormone and environmental stresses. Plant Cell Tiss Organ Cult 97:271–283CrossRefGoogle Scholar
  37. Zazimalova E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21:625–634PubMedGoogle Scholar
  38. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yuange Wang
    • 1
  • Huaihua Liu
    • 2
  • Shuping Wang
    • 3
  • Hongjie Li
    • 3
  1. 1.Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  2. 2.Postdoctoral Research Center of Shandong Shengfeng Seeds Co., Ltd.JiaxiangChina
  3. 3.Shandong Shengfeng Seeds Co., Ltd.JiaxiangChina

Personalised recommendations