Skip to main content
Log in

Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

YUCCA is an important enzyme which catalyzes a key rate-limiting step in the tryptophan-dependent pathway for auxin biosynthesis and implicated in several processes during plant growth and development. Genome wide analyses of YUCCA genes have been performed in Arabidopsis, rice, tomato, and Populus, but have never been characterized in soybean, one of the most important oil crops in the world. In this study, 22 GmYUCCA genes (GmYUCCA1-22) were identified and named based on soybean whole-genome sequence. Phylogenetic analysis of YUCCA proteins from Glycine max, Arabidopsis, Oryza sativa, tomato, and Populus euphratica revealed that GmYUCCA proteins could be divided into four subfamilies. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that GmYUCCA genes have diverse expression patterns in different tissues and under various stress treatments. Compared to the wild type (WT), the transgenic GmYUCCA5 Arabidopsis plants displayed downward curling of the leaf blade margin, evident apical dominance, higher plant height, and shorter length of siliques. Our results provide a comprehensive analysis of the soybean YUCCA gene family and lay a solid foundation for further experiments in order to functionally characterize these gene members during soybean growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 120:1790–1799

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Delker C, Raschke A, Quint M (2008) Auxin dynamics: the dazzling complexity of a small molecule’s message. Planta 227:929–941

    Article  CAS  PubMed  Google Scholar 

  • Di DW, Zhang CG, Luo P, An CW, Guo GQ (2016) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78:275–285

    Article  CAS  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  CAS  PubMed  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Hernández M, Pérez JA (2007) Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J Plant Growth Regul 26:329–340

    Article  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2011) Gene structure and spatiotemporal expression profile of tomato genes encoding YUCCA-like flavin monooxygenases: the ToFZY gene family. Plant Physiol Biochem 49:782–791

    Article  PubMed  Google Scholar 

  • Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P (2008) sparse inflorescence1 encodes a monocotspecific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci 105:15196–15201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanashyam C, Jain M (2009) Role of auxin-responsive genes in biotic stress responses. Plant Signal Behav 4:846–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS, Bohnert HJ, Hasegawa PM, Yun DJ, Bressan RA (2007) yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxinrelated phenotypes. Plant Physiol 145:722–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JI, Baek D, Park HC, Chun HJ, Oh DH, Lee MK, Cha JY, Kim WY, Kim MC, Chung WS, Bohnert HJ, Lee SY, Bressan RA, Lee SW, Yun DJ (2013) Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol Plant 6:337–349

    Article  CAS  PubMed  Google Scholar 

  • Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386

    Article  CAS  PubMed  Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Jung JH, Han DY, Seo PJ, Park WJ, Park CM (2012) Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235:923–938

    Article  CAS  PubMed  Google Scholar 

  • Leyser O (2010) The power of auxin in plants. Plant Physiol 154:501–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyser O (2011) Auxin, self-organization, and the colonial nature of plants. Curr Biol 21:R331–R337

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu B, Yu L, Feng D, Wang H, Wang J (2009) Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol 9:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Yin N, Niu ZB, Hui WR, Song J, Huang CL, Wang HG, Kong L, Feng DS (2014) Isolation and characterization of three TaYUC10 genes from wheat. Gene 546:187–194

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ying YY, Zhang L, Gao QH, Li J, Zhang Z, Fang JG, Duan K (2012) Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (Fragaria × ananassa Duch.) Plant Cell Rep 31:1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci 110:15485–15490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DeltaDeltaC(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marsch-Martínez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329

    Article  CAS  PubMed  Google Scholar 

  • Park CM (2007) Auxin homeostasis in plant stress adaptation response. Plant Signal Behav 2:306–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Sauer M, Balla J, Luschnig C, Wisniewska J, Reinöhl V, Friml J, Benková E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JN, Souer E, Koes R (2002) FLOOZY of petunia is a flavin monooxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev 16:753–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Xu B, Wang H, Li J, Huang H, Xu L (2011) YUCCA genes are expressed in response to leaf adaxial–abaxial juxtaposition and are required for leaf margin development. Plant Physiol 157:1805–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellins and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojcikowska B, Jaskola K, Gasiorek P, Meus M, Nowak K, Gaj MD (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238:425–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward C, Bemis SM, Hill EG, Sawa S, Koshiba T, Torii KU (2005) Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol 139:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Kang BG, Osburn LD, Li Y, Cheng ZM (2009) Identification of the flavin-dependent monooxygenase-encoding YUCCA gene family in Populus trichocarpa and their expression in vegetative tissues and in response to hormone and environmental stresses. Plant Cell Tiss Organ Cult 97:271–283

    Article  CAS  Google Scholar 

  • Zazimalova E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21:625–634

    CAS  PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the project of Modern Seed Industry Enterprise Science and Technology Development of Shandong (SDKJ2012QF003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuange Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yuange Wang and Huaihua Liu have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, H., Wang, S. et al. Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.). Plant Growth Regul 81, 265–275 (2017). https://doi.org/10.1007/s10725-016-0203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0203-x

Keywords

Navigation