Plant Growth Regulation

, Volume 80, Issue 1, pp 37–45 | Cite as

OsSNAP32, a SNAP25-type SNARE protein-encoding gene from rice, enhanced resistance to blast fungus

  • Jia Luo
  • He Zhang
  • Wanwan He
  • Ying Zhang
  • Wenlei Cao
  • Hongsheng Zhang
  • Yongmei Bao
Original paper


SNAREs play important roles in plant responses to various biotic and abiotic stresses. OsSNAP32 is a SNAP25-type SNARE protein-encoding gene isolated from rice. OsSNAP32 is ubiquitously expressed in the various tissues of blast-resistant rice landrace Heikezijing and blast-susceptible Suyunuo, with higher expression in Heikezijing and induced expression in rice seedlings inoculated by the blast pathogen (Magnaporthe oryzae) race Hoku1. OsSNAP32-overexpressing transgenic lines in Suyunuo increased resistance to blast, with fewer lesions in the inoculated leaves compared with the non-transgenic control Suyunuo. OsSNAP32 RNAi transgenic lines in Heikezijing decreased resistance to blast, with some typical lesions in the inoculated leaves compared with the non-transgenic control Heikezijing. These results suggested that OsSNAP32 might be involved in rice resistance to blast.


Oryza sativa L. OsSNAP32 Magnaporthe oryzae Transgenic rice Resistance 



Days past inoculation


Hours past inoculation


Standard deviation


Complementary DNA


Hexadecyl trimethyl ammonium bromide



This research has been supported by Grants the National Key Project for Transgenic Crops (2014ZX08009-001B, 2014ZX08009-003-001-010), the Natural Science Foundation of China (30900888 and 31171516), the Fundamental Research Funds for the Central Universities (KYZ201302), Jiangsu Agriculture science and technology innovation fund (CX(12)1003-3, CX(15)1054). We wish to thank Prof. Zhongzhuan Lin, CAAS, China for providing the Japanese blast race Hoku1 and Prof. Zhiyi Chen, Prof. Yongfeng Liu, JAAS, China for providing six Chinese blast races, i.e., 191ZB13, 97-2ZC15, 35-1ZD1, 55-1ZE3, 42-2ZF1 and 113ZG1.


  1. Abrahams BS et al (2003) Metaphase fishing of transgenic mice recommended: fish and sky define BAC-mediated balanced translocation. Genesis (New York, NY: 2000) 36:134–141CrossRefGoogle Scholar
  2. Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, Mirza B (2009) High-quality plant DNA extraction for PCR: an easy approach. J Appl Genet 50:105–107CrossRefPubMedGoogle Scholar
  3. Bao YM, Wang JF, Huang J, Zhang HS (2008) Molecular cloning and characterization of a novel SNAP25-type protein gene OsSNAP32 in rice (Oryza sativa L.). Mol Biol Rep 35:145–152CrossRefPubMedGoogle Scholar
  4. Blatt MR (2002) Toward understanding vesicle traffic and the guard cell model. New Phytol 153:405–413CrossRefGoogle Scholar
  5. Chandler KJ, Chandler RL, Broeckelmann EM, Hou Y, Southard-Smith EM, Mortlock DP (2007) Relevance of BAC transgene copy number in mice: transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression. Mamm Genome 18:693–708CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97:165–174CrossRefPubMedGoogle Scholar
  7. Chiang C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–397CrossRefPubMedPubMedCentralGoogle Scholar
  8. Collins NC et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977CrossRefPubMedGoogle Scholar
  9. Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95:15781–15786CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fukuda R et al (2000) Functional architecture of an intracellular membrane t-SNARE. Nature 407:198–202CrossRefPubMedGoogle Scholar
  11. Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE (1997) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:523–535CrossRefPubMedGoogle Scholar
  12. Heese M, Gansel X, Sticher L, Wick P, Grebe M, Granier F, Jurgens G (2001) Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J Cell Biol 155:239–249CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J: Cell Mol Biol 6:271–282CrossRefGoogle Scholar
  14. Jahn R, Scheller RH (2006) SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643CrossRefPubMedGoogle Scholar
  15. Jahn R, Sudhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911CrossRefPubMedGoogle Scholar
  16. Kasai F, Yoshihara M, Matsukuma S, O’Brien P, Ferguson-Smith MA (2007) Emergence of complex rearrangements at translocation breakpoints in a transgenic mouse; implications for mechanisms involved in the formation of chromosome rearrangements. Cytogenet Genome Res 119:83–90CrossRefPubMedGoogle Scholar
  17. Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kwon C et al (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840CrossRefPubMedGoogle Scholar
  19. Ladunga I (2007) More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res 35:433–440CrossRefPubMedGoogle Scholar
  20. Le Saux A, Houdebine LM, Jolivet G (2010) Chromosome integration of BAC (bacterial artificial chromosome): evidence of multiple rearrangements. Transgenic Res 19:923–931CrossRefPubMedGoogle Scholar
  21. Leyman B, Geelen D, Quintero FJ, Blatt MR (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283:537–540CrossRefPubMedGoogle Scholar
  22. Li PF, Zhai HQ, Zhang HS, Lu ZQ, Chen ZY, Wang FM (1999) Inheritance of blast resistance in two Japonica rice landraces from Taihu lake area. Chin J Rice Sci 13:11–14Google Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  24. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L (1996) Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. TAG Theor Appl Genet Theoretische und angewandte Genetik 93:1211–1217CrossRefPubMedGoogle Scholar
  25. Lukowitz W, Mayer U, Jurgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61–71CrossRefPubMedGoogle Scholar
  26. Ma K, Xiao J, Li X, Zhang Q, Lian X (2009) Sequence and expression analysis of the C3HC4-type RING finger gene family in rice. Gene 444:33–45CrossRefPubMedGoogle Scholar
  27. Mackill DJ, Bonman JM (1992) Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82:746–749CrossRefGoogle Scholar
  28. Nam KH, Cho A, Kwon JY, Park YW, Kim YH (2012) Feasibility of measuring 3-dimensional renal parenchymal volume to predict postnatal renal function in near-term fetuses with congenital hydronephrosis: a preliminary study. J Ultrasound Med 31:955–962PubMedGoogle Scholar
  29. Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK (1998) The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol 5:765–769CrossRefPubMedGoogle Scholar
  30. Pratelli R, Sutter JU, Blatt MR (2004) A new catch in the SNARE. Trends Plant Sci 9:187–195CrossRefPubMedGoogle Scholar
  31. Shi XL, Wang JF, Bao YM, Li PF, Xie LJ, Huang J, Zhang HS (2010) Identification of the quantitative trait loci in Japonica rice landrace Heikezijing responsible for broad-spectrum resistance to rice blast. Phytopathology 100:822–829CrossRefPubMedGoogle Scholar
  32. Sutter JU, Campanoni P, Blatt MR, Paneque M (2006) Setting SNAREs in a different wood. Traffic (Copenhagen, Denmark) 7:627–638CrossRefGoogle Scholar
  33. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395:347–353CrossRefPubMedGoogle Scholar
  34. Suzuki M, Kondo S, Pei Z, Maekawa A, Saito I, Kanegae Y (2015) Preferable sites and orientations of transgene inserted in the adenovirus vector genome: the E3 site may be unfavorable for transgene position. Gene Ther 22:421–429CrossRefPubMedPubMedCentralGoogle Scholar
  35. Vert JP, Foveau N, Lajaunie C, Vandenbrouck Y (2006) An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinform 7:520CrossRefGoogle Scholar
  36. Wang M, Chen C, Xu YY, Jiang RX, Han Y, Xu ZH, Chong K (2004) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Mol Biol Rep 22:409–417CrossRefGoogle Scholar
  37. Wick P, Gansel X, Oulevey C, Page V, Studer I, Durst M, Sticher L (2003) The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation. Plant Physiol 132:343–351CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100:8589–8594CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhu J et al (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14:3009–3028CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of AgricultureNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations