Skip to main content
Log in

Effects of sulfur supply and hydrogen peroxide pretreatment on the responses by rice under cadmium stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A hydroponic experiment was carried out to investigate the effects of sulfur (S) supply and hydrogen peroxide (H2O2) pretreatment on the growth and physiological responses by rice under cadmium (Cd) stress. Seedlings were grown with normal S level (3.4 mmol·L−1 sulfate), S deficiency (0 mmol·L−1 sulfate) for 6 days, or H2O2 (100 μmol·L−1) pretreatments for 1 day and subsequently exposed to 1.0 μmol·L−1 Cd for 7 days. In the S-deficient rice, both shoot and root Cd contents were increased 8.9 and 24.3 % respectively. In addition, cysteine (Cys), glutathione (GSH) and phytochelation (PC2–4) levels were increased significantly, while opposite effects were observed in the S-deficient rice. H2O2 pretreatment induced stronger Cd resistance in rice, as the amounts of thiols and the activity of glutathione S-transferase (GST) were all increased and the seedling growth was not inhibited by Cd stress. In conclusion, the results in this study demonstrated the adequate S supply and H2O2 pretreatment were important in Cd detoxification in rice through maintenance of cellular thiol levels and GST activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

Cd:

Cadmium

DTPA:

Diethylenetriamine-pentaacetic acid

GSH:

Reduced glutathione

GST:

Glutathione S-transferase

HEPES:

4-(2-Hydroxyethyl)-piperazine-1-propane sulfonic acid

mBBr:

Monobromobimane

MSA:

Methanesulfonic acid

PCS:

Phytochelatin synthase

PCs:

Phytochelatins

ROS:

Reactive oxygen species

RP-UPLC:

Reverse phase-ultra performance liquid chromatography

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substances

TFA:

Trifluoroacetic acid

TCEP:

Tris(β-chloroethyl)phosphate

References

  • Adamis PDB, Gomes DS, Pinto MLCC, Panek AD, Eleutherio ECA (2004) The role of glutathione transferases in cadmium stress. Toxicol Lett 154:81–88

    Article  CAS  PubMed  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Akhter MF, McGarvey B, Macfie SM (2012) Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors. J Plant Physiol 169:1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Ammar WB, Nouairi I, Zarrouk M, Ghorbel MH, Jemal F (2008) Antioxidative response to cadmium in roots and leaves of tomato plants. Biol Plant 52:727–731

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Neumann G, Cesco S, Toppi LS, Pinton R (2012) Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. J Exp Bot 63:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Chekmeneva E, Gusmäo R, Díaz-Cruz JM, Arińo C, Esteban M (2011) From cysteine to longer chain thiols: a thermodynamic analysis of cadmium binding by phytochelatins and their fragments. Metallomics 3:838–846

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Guo Y, Yang L, Wang Q (2007) SEC-ICP-MS and ESI-MS/MS for analyzing in vitro and in vivo Cd-phytochelatin complexes in a Cd-hyperaccumulator Brassica chinensis. J Anal At Spectrom 22:1403–1408

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Deng F, Hatzios KK (2002) Purification and characterization of two glutathione S-transferase isozymes from indica-type rice involved in herbicide detoxification. Pestic Biochem Physiol 72:10–23

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Fan JL, Hu ZY, Ziadi N, Xia X, Wu CYH (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environ Pollut 158:409–415

    Article  CAS  PubMed  Google Scholar 

  • Grwin E, Löffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hassan MJ, Wang Z, Zhang G (2005) Sulfur alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice. J Plant Nutr 28:1785–1800

    Article  CAS  Google Scholar 

  • He JY, Zhu C, Ren YF, Jiang DA, Sun ZX (2007) Root morphology and cadmium uptake kinetics of the cadmium-sensitive rice mutant. Biol Plant 51:791–794

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 25:189–198

    Article  Google Scholar 

  • Hu YL, Ge Y, Zhang CH, Ju T, Cheng WD (2009) Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regul 59:51–61

    Article  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Lima AIG, Pereira SIA, Figueira EMDAP, Caldeira GCN, Caldeira HDQDM (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot 55:149–162

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculĺk M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Maier EA, Matthews RD, McDowell JA, Walden RR, Ahner BA (2003) Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered solution. J Environ Qual 32:1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione s-transferases in plants. Annu Rev Plant Biol 47:127–151

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  PubMed Central  PubMed  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minocha R, Thangavel P, Dhankher OP, Long S (2008) Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography. J Chromatogr A 1207:72–83

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour Technol 100:2155–2161

    Article  CAS  PubMed  Google Scholar 

  • Moons A (2003) Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553:427–432

    Article  CAS  PubMed  Google Scholar 

  • Na GN, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

    Article  CAS  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129:1872–1879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34:994–1008

    Article  CAS  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sneller FEC, van Heerwaarden LM, Koevoets PLM, Vooijs R, Schat H, Verkleij JAC (2000) Derivatization of phytochelatins from silene vulgaris, induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman’s reagent and monobromobimane. J Agric Food Chem 48:4014–4019

    Article  CAS  PubMed  Google Scholar 

  • Szöllösi R, Varga IS, Erdei L, Mihalik E (2009) Cadmium-induced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds. Ecotoxicol Environ Saf 72:1337–1342

    Article  PubMed  Google Scholar 

  • Tamás L, Dudíková J, Ďurčeková K, Halušková L, Huttová J, Mistrík I, Ollé M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    Article  PubMed  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88:201–216

    Article  CAS  Google Scholar 

  • Tukendorf A, Rauser WE (1990) Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci 70:155–166

    Article  CAS  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:5–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Wang PY, Sun LG, Zhang JJ, Yu J, Wang YW, Chen GX (2014) Alleviation of cadmium toxicity by cerium in rice seedlings is related to improved photosynthesis, elevated antioxidant enzymes and decreased oxidative stress. Plant Growth Regul 74:251–260

    Article  CAS  Google Scholar 

  • Zhang CH, Yin XM, Gao KH, Ge Y, Cheng WD (2013) Non protein thiols and glutathione S-transferase alleviate Cd stress and reduce root-to-shoot translocation of Cd in rice. J Plant Nutr Soil Sci 176:626–633

    Article  CAS  Google Scholar 

  • Zuchi S, Cesco S, Astolfi S (2012) High S supply improves Fe accumulation in durum wheat plants grown under Fe limitation. Environ Exp Bot 77:25–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Science Foundation of China (30700479) and Research Fund for the Doctoral Program of Higher Education of China (20090097110035, 20110097110004) and Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, Chinese Academy of Science (Y052010019) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhang, C., Yan, J. et al. Effects of sulfur supply and hydrogen peroxide pretreatment on the responses by rice under cadmium stress. Plant Growth Regul 77, 299–306 (2015). https://doi.org/10.1007/s10725-015-0064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0064-8

Keywords

Navigation