Skip to main content

Advertisement

Log in

Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salt stress is a rising threat to crop productivity, among several notable consumed crops tomato is often under threat due to salt stress. In this study, the role of Si in restraining salinity stress responses in root proteome and genes involved in stress tolerance has been studied. Fifteen days old tomato (Lycopersicon esculentum L.) plants grown hydroponically with or without NaCl were fed with 2.5 mM Si in the form of potassium silicate [K2SiO3]. The response to a combined effect of NaCl and Si were studied 5 days after treatment. Proteomic analysis indicated that 40 proteins were differentially expressed under Si and/or salt stress treatments. Twenty-four of them were up-regulated by Si supplements (50 mM +NaCl/+Si) and down-regulated in salt-stressed roots (50 mM +NaCl/−Si), and these proteins were mostly associated with stress responses, plant hormones and transcriptional regulations. The rest of them belong to other secondary metabolites. Moreover, 17 differentially expressed proteins (25 mM +NaCl/+Si), up-regulated in the Si treatments, were mostly related to stress responses, plant hormones and cellular biosynthesis, and the rest of the proteins were related to transcriptional regulation, RNA binding and other secondary metabolisms. In addition, 17 protein spots were observed absent in salinity-stressed roots (25/or 50 mM +NaCl/−Si). Moreover, the important genes associated with salt stress responses (leDREB-1, leDREB-2 and leDREB-3), antioxidants (leAPX, leSOD and leCAT genes) and Si transport (leLsi-1, leLsi-2 and leLsi-3) were analyzed by the real-time polymerase chain reaction. The physiological data such as thiobarbituric acid reactive substances, superoxide dismutase as an oxidative stress marker and concentration of Si all correlated well with proteomic and gene expression data. The observed responses to Si supply in salt stressed plants indicate that the Si has a substantial role in alleviating the salinity stress responses by improving the root proteome and activating important genes responsible for stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DREB:

Dehydrative response element

Lsi:

Low silicon

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

CAT:

Catalase

IEF:

Isoelectric focusing

IPG:

Immobilized pressure gradient

NL:

Nonlinear

2-DE:

Second dimension electrophoresis

SDS:

Sodium dodecyl sulfate

MS:

Mass spectrometer

MALDI-TOF:

Matrix assisted laser desorption/ionization time of flight

Si:

Silicon

NaCl:

Sodium chloride

PCR:

Polymerase chain reaction

References

  • Aghaei K, Komatsu S (2013) Crop and medicinal plants proteomics in response to salt stress. Front Plant Sci 4:1–9

    Article  Google Scholar 

  • Ahsan N, Renault J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602–2621

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of proteins utilizing the principal of protein-dye binding. Anal Biochem 72:1–2

  • Bhushan D, Pandey A, Choudhary M, Datta A, Chakraborty S, Chakraborty N (2006) Comparative proteomic analysis of differentially expressed proteins in Chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884

    Article  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12(4):431–434

    Article  CAS  PubMed  Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hort 86:247–260

    Article  CAS  Google Scholar 

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531

    Article  CAS  Google Scholar 

  • Dhindsa RH, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Faurobert M, Pelpoir E, Chaïb J (2006) Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. In: Zivy M (ed) Plant proteomics. Methods and protocols, vol 355. Humana Press, Totowa, pp 9–14

    Chapter  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies JG, Belanger RR (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci USA 103:17554–17559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    Article  CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Ge P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y (2012) Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteomics 75(6):1867–1885

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid Peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Gene Dev 24:1695–1708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huerta-Ocampo JA, Barrera-Pacheco A, Mendoza-Hernández CS, Espitia-Rangel E, Mock HP, de la Rosa APB (2014) Salt stress-induced alterations in the root proteome of Amaranthus cruentus L. J Proteome Res. doi:10.1021/pr500153m

    PubMed  Google Scholar 

  • Jacobs T (1997) Why do plant cells divide? Plant Cell 9:1021–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    Article  CAS  PubMed  Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress response in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang YC, Wong JW, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58(4):475–483

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sun W, Zhu Y, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Poll 147:422–428

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–211

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Song L, Huang Z, Yang Y, Wang S, Wang Z, Tong J, Gu W, Ma H, Xiao L (2014) Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in response to salinity stress. EuPA Open Proteomics 4:40–57

    Article  CAS  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed flowering 1, novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720–729

    Article  CAS  PubMed  Google Scholar 

  • Manaa A, Mimouni H, Wasti S, Gharbi E, Aschi-Smiti S, Faurobert M, Ahmed HB (2013) Comparative proteomic analysis of tomato (Solanum lycopersicum) leaves under salinity stress. Plant Omics J 6(4):268–277

    CAS  Google Scholar 

  • Molassiotis AN, Diamantidis GC, Therios IN, Tsirakoglou V, Dimassi KN (2005) Oxidative stress, antioxidant activity and Fe(III)-chelate reductase activity of five prunus rootstocks explants in response to Fe deficiency. Plant Growth Regul 46:69–78

    Article  CAS  Google Scholar 

  • Mortz E, Krogh TN, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359–1363

    Article  CAS  PubMed  Google Scholar 

  • Muneer S, Kim TH, Qureshi MI (2012) Fe modulates Cd-induced oxidative stress and the expression of stress response proteins in the nodules of Vigna radiata. Plant Growth Regul 68:421–433

    Article  CAS  Google Scholar 

  • Muneer S, Hakeem KR, Mohamed R, Lee JH (2014a) Cadmium toxicity induced alterations in the root proteome of green gram in contrasting response towards iron supplement. Int J Mol Sci 15(4):6343–6355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muneer S, Lee BR, Kim KY, Park SH, Zhang Q, Kim TH (2014b) Involvement of sulphur nutrition in modulating iron deficiency response in photosynthetic organelles of oilseed rape (Brassica napus L.). Photosynth Res 119:319–329

    Article  CAS  PubMed  Google Scholar 

  • Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014c) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15:21803–21824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakashima K, Shinwar ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  CAS  PubMed  Google Scholar 

  • Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10:25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann D, Zur Neiden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  PubMed  Google Scholar 

  • Nwugo CC, Huerta AJ (2011) The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium stress. J Proteome Res 10:518–528

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Choudhary MK, Bhushan D, Chattopadhyay A, Chakraborty S, Datta A, Chakroborty N (2006) The nuclear proteome of chick pea (Cicer arietinum L.) reveals predicted and un-expected proteins. J Proteome Res 5(12):3301–3311

    Article  CAS  PubMed  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd-stress. Plant Sci 167:1171–1178

    Article  CAS  Google Scholar 

  • Qureshi MI, Muneer S, Bashir H, Ahmad J, Iqbal M (2010) Nodule physiology and proteomics of stresses legumes. Adv Bot Res 56:1–48

    Article  CAS  Google Scholar 

  • Rakwal R, Agrawal GK (2003) Rice proteomics: current status and future prospectives. Electrophoresis 24:3378–3389

    Article  CAS  PubMed  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2005) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophy Res Commun 290:998–1009

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RP, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen AE (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genom 13:499

    Article  CAS  Google Scholar 

  • Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: towards the creation of salt-tolerant crops? J Proteomics 4:1323–1337

    Article  Google Scholar 

  • Wang L, Liang W, Xing J, Tan F, Chen Y, Huang L, Cheng CL, Chen W (2013) Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. J Proteome Res 12:5124–5136

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, Lin Y, Huang L, Xing J, Chen W (2014) Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel short-term stress. PLOSOne 9(1):e83141

    Article  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60(12):3545–3557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu XY, Fan R, Zheng R, Li CM, Yu DY (2011) Proteomic analysis of seed germination under salt stress in soybeans. J Zhejiang Uni Sci B 12:507–517

    Article  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41:251–257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported from the grants of BK21 Plus program (Brain Korea 21), Ministry of Education, South Korea.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Ryong Jeong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneer, S., Jeong, B.R. Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul 77, 133–146 (2015). https://doi.org/10.1007/s10725-015-0045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0045-y

Keywords

Navigation