Skip to main content
Log in

Ectopic expression of LBD15 affects lateral branch development and secondary cell wall synthesis in Arabidopsis thaliana

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Lateral organ boundaries domain (LBD)/ASL (AS2-like) genes encode plant–specific transcription factors and play important roles in plant growth and development. However, little information is available about the LBD15 gene in Arabidopsis. Here, the expression patterns of the LBD15 gene were evaluated and its physiological roles in Arabidopsis were investigated. The LBD15 gene was expressed at different levels in many tissues including shoots, stems, roots, flowers and siliques. The overexpression of LBD15 can activate the transcription of BOP1 and BOP2, which are critical to controlling lateral organ development and inflorescence architecture. In addition, our results indicate that SND1, which is a key regulator of secondary wall synthesis, can bind to specific SNBE elements of the LBD15 promoter to activate the expression of LBD15. Elevated expression of LBD15 was found to down-regulate the transcription of CesA4, CesA7, and CesA8, which encode cellulose synthesis of the secondary cell wall, and disrupt the secondary cell wall formation. In this way, LBD15 may be involved in regulating secondary cell wall synthesis during differentiation of xylem cells. The present study provides novel evidence that may facilitate understanding the signaling network of lateral branch development and secondary cell wall synthesis in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

LBD:

Lateral organ boundary (LOB) domain

qRT-PCR:

Quantitative real-time PCR

BR:

Brassinosteroid

TEM:

Transmission electron microscopy

WUS:

WUSCHEL

References

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell EM, Lin WC, Husbands AY, Yu L, Jaganatha V, Jablonska B, Mangeon A, Neff MM, Girke T, Springer PS (2012) Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. PNAS 109:21146–21151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berckmans B, Vassileva V, Schmid SP et al (2011) Auxin dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23:3671–3683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borghi L, Bureau M, Simon R (2007) Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity. Plant Cell 19:1795–1808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Byrne M, Timmermans M, Kidner C, Martienssen R (2001) Development of leaf shape. Curr Opin Plant Biol 4:38–43

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Xu C, Xu K, Hu Y (2012) Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ha CM, Jun JH, Nam HG, Fletcher JC (2007) BLADE-ON-PETIOLE 1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes. Plant Cell 19:1809–1825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  CAS  PubMed  Google Scholar 

  • Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11:173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y (2002) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43:467–478

    Article  CAS  PubMed  Google Scholar 

  • Jun JH, Ha CM, Fletcher JC (2010) BLADE-ON-PETIOLE1 coordinates organ determinacy and axial polarity in Arabidopsis by directly activating ASYMMETRIC LEAVES2. Plant Cell 22:62–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan M, Xu M, Murmu J, Tabb P, Liu Y, Storey K, McKim SM, Douglas CJ, Hepworth S (2012) Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. Plant Physiol 158:946–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Lee HW (2013) Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis. Plant Signal Behav 8(2):e22979

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee DK, Geisler M, Springer PS (2009) LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis. Development 136:2423–2432

    Article  CAS  PubMed  Google Scholar 

  • Li CJ, Bangerth F (1992) The possible role of cytokinins, ethylene and indoleacetic acid in apical dominance. In: Karssen C et al (eds) Progress in plant growth and regulation. Kluwer Academic Publishers, Netherlands, pp 431–436

    Chapter  Google Scholar 

  • Li Q, Lin YC, Sun YH, Song J, Chen H, Zhang XH, Sederoff RR, Chiang VL (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. PNAS 109:14699–15704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu HL, Wang GC, Feng ZH, Zhu J (2010) Screening of genes associated with dedifferentiation and effect of LBD29 on pericycle cells in Arabidopsis thaliana. Plant Growth Regul 62:127–136

    Article  CAS  Google Scholar 

  • Maizel A, Weigel D (2004) Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J 38:164–171

    Article  CAS  PubMed  Google Scholar 

  • Majer C, Hochholdinger F (2011) Defining the boundaries: structure and function of LOB domain proteins. Trends Plant Sci 16:47–52

    Article  CAS  PubMed  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–495

    Article  CAS  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ori N, Eshed Y, Chuck G, Bowman JL, Hake S (2000) Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127:5523–5532

    CAS  PubMed  Google Scholar 

  • Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JA, Palme K (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337

    Article  CAS  PubMed  Google Scholar 

  • Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. PNAS 106:17431–17436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8:506–511

    Article  CAS  PubMed  Google Scholar 

  • Schoof H, Lenhard M, Haecker A et al (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  CAS  PubMed  Google Scholar 

  • Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128:1771–1783

    CAS  PubMed  Google Scholar 

  • Shuai B, Reynaga-Pena CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun XD, Feng Z, Meng L, Zhu J, Geitmann A (2013) Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. Planta 237:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Tamas IA (1995) Hormonal regulation of apical dominance. In: Davies PJ (ed) Plant hormones. Kluwer Academic Publishers, The Netherlands, pp 572–579

    Chapter  Google Scholar 

  • Tantikanjana T, Yong JW, Letham DS, Griffith M, Hussain M, Ljung K, Sandberg G, Sundaresan V (2001) Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev 15:1577–1588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor NG, Gardiner JC, Whiteman R, Turner SR (2004) Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11:329–338

    Article  CAS  Google Scholar 

  • Xu L, Xu Y, Dong AW, Sun Y, Pi LM, Xu YQ, Huang H (2003) Novel AS1 and as2 defects in leaf adaxial–abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERACTA functions in specifying leaf adaxial identity. Development 130:4097–4107

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Hu T, McKim SM, Murmu J, Haughn GW, Hepworth SR (2010) Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant J 63:974–989

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Ye ZH (2010) Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant 3:1087–1103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grant from the Natural Science Foundation of China (Grant No. 30970169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhou or Jian Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Guo, J., Zhou, C. et al. Ectopic expression of LBD15 affects lateral branch development and secondary cell wall synthesis in Arabidopsis thaliana . Plant Growth Regul 73, 111–120 (2014). https://doi.org/10.1007/s10725-013-9873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9873-9

Keywords

Navigation