Skip to main content

Advertisement

Log in

Novel phosphate solubilizing bacteria ‘Pantoea cypripedii PS1’ along with Enterobacter aerogenes PS16 and Rhizobium ciceri enhance the growth of chickpea (Cicer arietinum L.)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Phosphate solubilizing bacteria (PSB) are known to convert the insoluble forms of phosphate to soluble one and make them available for plant uptake. The present study aimed to isolate PSB from the rhizosphere of chickpea (Cicer arietinum L. cv. GPF2) and examine their effect on the growth and seed number. The isolated PSB were analyzed for phosphate solubilization, indole acetic acid and siderophore production. PSB were characterized for phenotypic and biochemical properties, BIOLOG and whole-cell fatty acid methyl ester profile and found to be closely related to Pantoea cypripedii and Enterobacter aerogenes based on 16s rRNA gene sequencing. A high increase in growth of C. arietinum was observed when innoculated with PSB in tricalcium phosphate amended soils. A higher uptake in total P (53 %) of plants was observed when inoculated with mixture of P. cypripedii and E. aerogenes along with Rhizobium ciceri as compared to respective control plants which significantly increased the seed number (98.3 %) and seed weight (46.1 %). This study demonstrated the ability of novel PSB P. cypripedii along with E. aerogenes and R. ciceri to promote chickpea growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Appl Environ Microbiol l44:2926–2933

    Google Scholar 

  • Appanna V (2007) Efficacy of phosphate solubilizing bacteria isolated from vertisols on growth and yield parameters of sorghum. Res J Microbiol 2:550–559

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar H, Marschner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Beck DP, Wery J, Saxena MC, Ayadi A (1991) Dinitrogen fixation and nitrogen balance in cool-season food legumes. Agron J 83:334–341

    Article  CAS  Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:29–37

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Crowley DE, Reid CPP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87:680–685

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • EL-Fiki AA (2006) Genetic diversity in rhizobia determined by random amplified polymorphic DNA analysis. J Agric Soc Sci 2:1–4

    Google Scholar 

  • Folman LB, Postma J, Van-Veen JA (2001) Ecophysiological characterization of rhizosphere bacterial communities at different root locations and plant developmental stages of cucumber grown on rockwool. Microb Ecol 42:586–597

    Article  PubMed  CAS  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gordon SA, Paleg LG (1957) Observations on the quantitative determination of indole acetic acid. Physiol Plant 10:39–47

    Article  CAS  Google Scholar 

  • Graham PH, Parker CA (1964) Diagnostic features in characterization of the root nodule bacteria of the legumes. Plant Soil 20:383–396

    Article  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimor

    Google Scholar 

  • Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY (2003) 2-Ketogluconic acid production and phosphate solubilization by E. intermediu. Curr Microbiol 47:87–92

    Article  PubMed  CAS  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi, pp 134–135

    Google Scholar 

  • Jisha MS, Alagawadi AR (1996) Nutrient uptake and yield of sorghum (Sorghum bicolor L. Moench) inoculated with phosphate solubilising bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Microbiol Res 151:213–217

    Article  CAS  Google Scholar 

  • Koenig RA, Johnson CR (1942) Colorimetric determination of phosphorus in biological materials. Anal Chem 14:155–156

    CAS  Google Scholar 

  • Kovaks N (1956) Identification of Pseudomonas pyocyanea by the oxidation reaction. Nature 178:703

    Article  Google Scholar 

  • Kundu BS, Gaur AC (1982) Yield increases of wheat after inoculation with A. croococcum and Phosphobacteria. Curr Sci 51:291–293

    Google Scholar 

  • Linder RC (1944) Rapid analytical method for some of the more common inorganic constituents of plant tissues. Plant Physiol 19:76–89

    Article  Google Scholar 

  • Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484

    Article  Google Scholar 

  • Mamta, Rahi P, Pathaniad V, Gulatic A, Singh S, Bhanwra RK, Tewari T (2010) Stimulatory effect of phosphate solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46:222–229

  • Mamta, Bisht S, Singh B, Gulati A, Tewari R (2011) Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate solubilizing bacteria and rock phosphate. Plant Growth Regul 65:449–457

  • Mamta G, Rahi P, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R (2012a) Comparative efficiency of phosphate solubilizing bacteria under greenhouse conditions for promoting growth and aloin-A content of Aloe barbadensis. Arch Agron Soil Sci 58:437–44

    Google Scholar 

  • Mamta G, Kiran S, Gulati A, Bikram S, Tewari R (2012b) Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res 167:358–363

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Micro Ecol 51:326–335

    Article  Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727

    Article  CAS  Google Scholar 

  • Narula N, Kumar V, Behl RK, Deubel A, Gransee A, Merbach W (2000) Effect of P-solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions. J Plant Nutr Soil Sci 163:393–398

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available-phosphorus in soils by extraction with sodium bicarbonate. USDA Circulation No. 939. US Government Printing Office, Washington, DC, pp 19–27

  • Pereira PAA, Bliss FA (1989) Selection of common bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentally-controlled conditions. Plant Soil 115:75–82

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    PubMed  CAS  Google Scholar 

  • Raja P, Uma S, Gopal H, Govindarajan K (2006) Impact of bio inoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. J Biol Sci 6:815–823

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate-solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Ronald MA, James WS (2006) Handbook of media for clinical microbiology. Taylor and Francis, New York, p 73

    Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Tricalcium phosphate solubilizing abilities of Trichoderma sp. in relation to P uptake and growth and yield parameters of chick pea (Cicer arietinum L.). Can J Microbiol 51:217–222

    Article  PubMed  CAS  Google Scholar 

  • Salisbury FB (1994) The role of plant hormones. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York, pp 39–81

    Google Scholar 

  • Sarıoğlu G, Özçelik S, Kaymaz S (1993) Selection of effective nodosity bacteria (Rhizobium leguminosarum biovar. viceae) from lentil grown in Elazığ. Turk J Agric For 17:569–573

    Google Scholar 

  • Sasser M (1990) Technical Note 102. Tracking a strain using the Microbial Identification System. MIS, Newark, DE

  • Sasser M, Wichman MD (1991) Identification of microorganisms through use of gas chromatography and high-performance liquid chromatography. In: Balows A, Hausler Jr WJ, Herrman KL, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology, 5th edn. American Society for Microbiology, Washington, DC

  • Saxena AK, Tilak KVBR (1994) Inter relationship among the beneficial soil microorganisms. Indian J Microbiol 36:91–106

    Google Scholar 

  • Schwyn B, Nielands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Shahab S, Ahmed N, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4:1312–1316

    Google Scholar 

  • Sharma K, Dak G, Agarwal A, Bhatnagar M, Sharma R (2007) Effects of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herb Med Toxicol 1:61–63

    Google Scholar 

  • Singh S, Kapoor KK (1999) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28:139–144

    Article  CAS  Google Scholar 

  • Smith P, Goodman RM (1999) Host variation for interactions with beneficial plant associated microbes. Annu Rev Phytopathol 37:473–491

    Article  PubMed  CAS  Google Scholar 

  • Taief B, Sifi B, Zaman-Allah M, Drevon JJ, Lachaâl M (2007) Effect of salinity on root-nodule conductance to the oxygen diffusion in the Cicer arietinumMesorhizobium ciceri symbiosis. J Plant Physiol 164:1028–1036

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higguns DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tripura C, Sashidhar B, Podile AR (2007) Ethyl methane sulfonate mutagenesis enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5. Curr Microbiol 54:79–84

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodrıguez E, Cervantes E, Chamber M, Igual JM (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    Article  CAS  Google Scholar 

  • Valverde C, Ferrari A, Wall LG (2009) Effects of calcium in the nitrogen-fixing symbiosis between actinorhizal Discaria trinervis (Rhamnaceae) and Frankia. Symbiosis 49:151–155

    Article  CAS  Google Scholar 

  • Vassilev AM, Vassileva M (2006) Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant Soil 287:77–84

    Article  CAS  Google Scholar 

  • Vessey JK (2004) Benefits of inoculating legume crops with rhizobia in the northern Great Plains. Crop Manag. doi:10.1094/CM-2004-0301-04-RV

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wall LG, Hellsten A, Huss-Danell K (2000) Nitrogen, phosphorus, and the ratio between them affect nodulation in Alnus incana and Trifolium pratense. Symbiosis 29:91–105

    Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumber. Plant Cell Environ 16(5):579–585

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  PubMed  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Amil MD (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Department of Biotechnology for providing financial support. Thanks are also due to the Director, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India for providing facilities for BIOLOG and FAME analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Nayyar.

Additional information

Onkar Singh and Mamta Gupta have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, O., Gupta, M., Mittal, V. et al. Novel phosphate solubilizing bacteria ‘Pantoea cypripedii PS1’ along with Enterobacter aerogenes PS16 and Rhizobium ciceri enhance the growth of chickpea (Cicer arietinum L.). Plant Growth Regul 73, 79–89 (2014). https://doi.org/10.1007/s10725-013-9869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9869-5

Keywords

Navigation