Skip to main content
Log in

Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.10, 0.50, or 1.00 mM) as a foliar spray would protect pistachio (Pistacia vera L.) seedlings subjected to salt stress (0, 30, 60, or 90 mM NaCl). SA improved growth rate of pistachio seedlings under salt stress and increased relative leaf chlorophyll content, relative water content, chlorophyll fluorescence ratio, and photosynthetic capacity as compared with the control at the end of salt stress. SA ameliorated the salt stress injuries by inhibiting increases in proline content and leaf electrolyte leakage. It appeared the best ameliorative remedies of SA obtained when pistachio seedlings were sprayed at 0.50 and 1.00 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aftab T, Khan MMA, Idrees M, Naeem M, Moinuddin (2010) Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J Crop Sci Biotechnol 13:183–188

    Article  Google Scholar 

  • Aftab T, Masroor M, Khan A, Teixeira da Silva JA, Idrees M, Naeem M, Moinuddin (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J Plant Growth Regul 30:425–435

    Article  CAS  Google Scholar 

  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Azooz MM, Shaddad MA, Abdel-Latef AA (2004) The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars. Indian J Plant Physiol 9:1–8

    CAS  Google Scholar 

  • Baninasab B (2010) Induction of drought tolerance by salicylic acid in seedlings of cucumber (Cucumis sativus L.). J Hortic Sci Biotechnol 85:191–196

    CAS  Google Scholar 

  • Baninasab B, Ghobadi C (2011) Influence of paclobutrazol and application methods on high-temperature stress injury in cucumber seedlings. J Plant Growth Regul 30:213–219

    Article  CAS  Google Scholar 

  • Barba-Espin G, Clemete-Moreno MJ, Alvarez S, Garcia-Legaz MF, Hernandez JA, Diaz-Vivancos P (2011) Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biol 13:909–917

    Article  PubMed  CAS  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 24:519–570

    Google Scholar 

  • Bates LE, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bethkey PC, Drew MC (1992) Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsium annum during progressive exposure to NaCl salinity. Plant Physiol 99:219–226

    Article  Google Scholar 

  • Bjorkman O, Demming B (1987) Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77°K among vascular plants of diverse origin. Planta 170:489–504

    Article  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  PubMed  CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Ferguson L, Poss JA, Grattan SR, Grieve CM, Wang D, Wilson C, Donovan Chao CT (2002) Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress. J Ame Soc Hortic Sci 127:194–199

    CAS  Google Scholar 

  • Fletcher RA, Kallidumbil V, Steele P (1982) An improved bioassay for cytokinins using cucumber cotyledons. Plant Physiol 69:675–677

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez L, Gonzalez-Vilar M (2001) Determination of relative water content. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic, Dordrecht, pp 207–212

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  PubMed  CAS  Google Scholar 

  • Hajihashemi S, Kiarostami K, Saboora A, Enteshari S (2007) Exogenously applied paclobutrazol modulates growth in salt-stressed wheat plants. Plant Growth Regul 53:117–128

    Article  CAS  Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K+ absorption in oats roots by salicylic acid. Plant Physiol 68:1349–1353

    Article  PubMed  CAS  Google Scholar 

  • Hernandeza JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007a) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209

    Article  Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007b) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73:190–195

    Article  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    Article  PubMed  CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  PubMed  CAS  Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz A (2005) Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper seeds. HortScience 40:197–200

    CAS  Google Scholar 

  • Korkmaz A, Uzunlu M, Demirkiran AR (2007) Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiol Plant 29:503–507

    Article  CAS  Google Scholar 

  • Manivannan P, Abdul Jaleel C, Kishorekumar A, Sankar B, Somasundaram R, Panneerselvam R (2008) Protection of Vigna unguiculata (L.) Walp. plants from salt stress by paclobutrazol. Colloids Surf B Biointerfaces 61:315–318

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Senaratna T, Walker MA, Kendall EJ, Hetherington PR (1988) Deterioration of membranes during aging in plants: evidence for free radical mediation. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, London, pp 442–464

    Google Scholar 

  • Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178

    PubMed  CAS  Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169:331–339

    Article  CAS  Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105

    Article  CAS  Google Scholar 

  • Nemeth M, Janda T, Hovarth E, Paldi E, Szali G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  CAS  Google Scholar 

  • Noreen Z, Ashraf M, Akram NA (2010) Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agron Crop Sci 196:273–285

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Poor P, Gemes K, Horvath F, Szepesi A, Simon ML, Tari I (2010) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13:105–114

    Article  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova R, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol Special Issue 314–319

  • Shakirova FM, Bezrukova M (1997) Induction of wheat resistance against environmental salinization by salicylic acid. Biol Bull 24:109–112

    Google Scholar 

  • Sharma D, Dubey A, Srivastav M, Singh A, Sairam R, Pandey R, Dahuja A, Kaur C (2011) Effect of putrescine and paclobutrazol on growth, physiochemical parameters, and nutrient acquisition of salt-sensitive citrus rootstock Karna khatta (Citrus karna Raf.) under NaCl Stress. J Plant Growth Regul 30:301–311

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    Article  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Stepien P, Klobus G (2006) Water relations and photosynthesis in Cucumis sativus L. Leaves under salt stress. Biol Plant 50:610–616

    Article  CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. ‘Roma’): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid- mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica junea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    Article  CAS  Google Scholar 

  • Szepesi A, Csiszar J, Bajkan S, Gemes K, Horvath F, Erdei L, Deer AK, Simon ML, Tari I (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biol Szegediensis 49:123–125

    Google Scholar 

  • Tari I, Csiszar J, Gabriella S, Horvath F, Pecsvaradi A, Kiss G, Szepsi A, Szabo M, Erdei L (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol Szegediensis 46:55–56

    Google Scholar 

  • Vettakkorumakankav NN, Falk D, Saxena P, Fletcher RA (1999) A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol 40:542–548

    Article  CAS  Google Scholar 

  • Xu Q, Xu X, Zhao Y, Jiao K, Herbert SJ, Hao L (2008) Salicylic acid, hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul 54:249–259

    Article  CAS  Google Scholar 

  • Yang YN, Qi M, Mei CS (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  PubMed  CAS  Google Scholar 

  • Yildirim E, Turan M, Guvence I (2008) Effect of foliar salicylic acid application on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J Plant Nut 31:593–612

    Article  CAS  Google Scholar 

  • Zekri M, Parson LR (1990) Response of split-root sour orange seedlings to NaCl and polyethylene glycol stresses. J Exp Bot 41:35–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. M. Baghbanha, Mr. H. Arabzadegan, and Mr. R. Mohammadi for their valuable help with this experiment. This research was supported by the Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Baninasab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastam, N., Baninasab, B. & Ghobadi, C. Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69, 275–284 (2013). https://doi.org/10.1007/s10725-012-9770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-012-9770-7

Keywords

Navigation