Plant Growth Regulation

, Volume 64, Issue 2, pp 185–192 | Cite as

The brachytic 2 and 3 maize double mutant shows alterations in plant growth and embryo development

  • Elena Cassani
  • Daniele Villa
  • Massimo Durante
  • Michela Landoni
  • Roberto Pilu
Original paper


In maize there are three types of brachytic mutants (br1, br2 and br3) showing short stature and a gibberellins-insensitive phenotype. So far only the brachytic 2 gene has been cloned and it encodes for a putative protein of the Multidrug Resistant (MDR) class of P-glycoproteins (PGPs) that could be involved in polar movement of auxins: in fact the br2 mutant is insensitive to treatment with auxins and gibberellins. We have isolated a new recessive mutation of br2 gene (named br2-23) and with the aim of study its interactions with the other brachytic mutations we produced a br2 br3 double mutant that showed an additive effect on the stature with respect to the single mutants br2 and br3 and abnormal growth. In the progeny of the selfed double mutant we observed various defective seedlings, mirroring an altered embryo development and growth, which also suggested a role for the br3 gene in auxin transport. Expression analysis of the auxin efflux transporters codified by ZmPIN1 genes supports this finding, showing the up-regulation of the ZmPIN1a gene in the br3 mutant. To our knowledge this is the first report showing the involvement of Br2 and Br3 genes in embryo development. These single and double mutants appear to be useful tools to study the genetics of plant height and to investigate auxin transport in plants.


Maize Embryo development Brachytic 2 gene Polar auxin transport ZmPIN1 genes 



This work was supported by Fondo Interno Ricerca Scientifica e Tecnologica (F.I.R.S.T. 2006, 2007 and 2008 to R. Pilu). We wish to thank Dr. Davide Reginelli and Dr. Andrea Bucci for their hard work in the field.


  1. Anderson JC, Chow PN (1960) Phenotypes and grain yield associated with br2 gene in single cross hybrids of dent corn. Crop Sci 1:335–337Google Scholar
  2. Beavis WD, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83:141–145CrossRefGoogle Scholar
  3. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950PubMedCrossRefGoogle Scholar
  4. Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19:131–147PubMedCrossRefGoogle Scholar
  5. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44PubMedCrossRefGoogle Scholar
  6. Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol 142:254–264PubMedCrossRefGoogle Scholar
  7. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  8. Forestan C, Meda S, Varotto S (2010) ZmPIN1-Mediated Auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol 152:1373–1390PubMedCrossRefGoogle Scholar
  9. Gallavotti A, Yang Y, Schmidt RJ, Jackson D (2008) The relationship between auxin transport and maize branching. Plant Physiol 147:1913–1923PubMedCrossRefGoogle Scholar
  10. Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejenda KFK, Smith AP, Baroux C, Grossniklaus U, Muller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194PubMedCrossRefGoogle Scholar
  11. Goldsmith MHM (1977) Polar transport of auxin. Annu Rev Plant Physiol Plant Mol Biol 28:439–478Google Scholar
  12. Jahrmann T, Bastida M, Pineda M, Gasol E, Ludevid MD, Palacín M, Puigdomènech P (2005) Studies on the function of TM20, a transmembrane protein present in cereal embryos. Planta 222:80–90PubMedCrossRefGoogle Scholar
  13. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene. sd-1 rice: “green revolution gene” encodes a mutant enzyme involved in giberellin synthesis. DNA Res 9:11–17PubMedCrossRefGoogle Scholar
  14. Mravec J, Kubeš M, Bielach A, Gaykova V, Petrášek J, Skupa P, Chand S, Benková E, Zažímalová E, Friml J (2008) Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135:3345–3354PubMedCrossRefGoogle Scholar
  15. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR Transporter in Compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84PubMedCrossRefGoogle Scholar
  16. Noh B, Murphy AS, Spalding EP (2001) Multidrug Resistance–like genes of Arabidopsis required for auxin transport and Auxin-Mediated development. Plant Cell 13:2441–2454PubMedCrossRefGoogle Scholar
  17. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant giberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  18. Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688PubMedCrossRefGoogle Scholar
  19. Pilu R, Consonni G, Busti E, MacCabe AP, Giulini A, Dolfini S, Gavazzi G (2002) Mutations in two independent loci lead to suppression of the shoot apical meristem in maize. Plant Physiol 128:502–511PubMedCrossRefGoogle Scholar
  20. Pilu R, Cassani E, Villa D, Curiale S, Panzeri D, Cerino Badone F, Landoni M (2007) Isolation and characterization of a new mutant allele of brachytic 2 maize gene. Mol Breed 20:83–91CrossRefGoogle Scholar
  21. Scott GE, Campbell CE (1969) Internode length in normal and brachytic-2 maize inbreds and single crosses. Crop Sci 9:293–295CrossRefGoogle Scholar
  22. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), green revolution rice, contains a defective giberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048PubMedCrossRefGoogle Scholar
  23. van Tunen AJ, Koes RE, Spelt CE, van der Krol AR, Stuitje AR, Mol JN (1988) Cloning of two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light regulated and differential expression of flavonoid genes. EMBO J 14:2350–2363Google Scholar
  24. Vieten A, Vanneste S, Wisniewska J, Benková E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531PubMedCrossRefGoogle Scholar
  25. Wright AD, Moehlenkamp CA, Perrot GH, Neuffer MG, Cone KC (1992) The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase. Plant Cell 4:711–719PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elena Cassani
    • 1
  • Daniele Villa
    • 1
  • Massimo Durante
    • 1
  • Michela Landoni
    • 2
  • Roberto Pilu
    • 1
  1. 1.Dipartimento di Produzione VegetaleUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Scienze Biomolecolari e BiotecnologieUniversità degli Studi di MilanoMilanItaly

Personalised recommendations