Skip to main content
Log in

Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of Amaranthus retroflexus seeds in a nitric oxide-dependent manner

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) and reactive oxygen species (ROS) are important regulators involving various processes of plant growth and development. Amaranthus retroflexus L. seeds possess a relative dormancy property that means freshly collected seeds can only germinate over a limited, high temperature range. Here, we show that the relative dormancy of A. retroflexus seeds could be significantly released following treatments with exogenous NO/cyanide (CN) donors such as nitrite, gases evolved from acidified nitrite, sodium nitroprusside (SNP), potassium ferricyanide (Fe(III)CN) and gases evolved from SNP or Fe(III)CN solutions, as well as exogenously supplied ROS, hydrogen peroxide (H2O2). However, the effectiveness varied among these chemicals. Gases evolved from acidified nitrite displayed maximum effect while H2O2 had minimum effect. We also show that the effects of these compounds could be significantly inhibited by NO specific scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), indicating that NO signaling pathway might play a central role in the dormancy release and germination of A. retroflexus seeds, while both ROS and CN might act through NO-dependent signaling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CN:

Cyanide

CRG:

Coefficient of rate of germination

Fe(III)CN:

Potassium ferricyanide

NO:

Nitric oxide

PTIO:

2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

References

  • Batak I, Dević M, Giba Z, Grubišić D, Poff KL, Konjević R (2002) The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci Res 12:253–259

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4:299–300

    Article  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004a) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004b) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel I, Reinőhl V, Jones RL (2006a) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel I, Jones RL (2006b) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57:517–526

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD, Black M (1982) Physiology and biochemistry of seeds in relation to germination, vol. 2. Springer-Verlag, Heidelberg

    Google Scholar 

  • Bewley JD, Black M (1994) Seed: physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Finch-Savage W, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Fontaine O, Huault C, Pavis N, Billard JP (1994) Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity. Plant Physiol Biochem 32:677–683

    CAS  Google Scholar 

  • Gallagher RS, Cardina J (1998a) Phytochrome-mediated Amaranthus germination I: effect of seed burial and germination temperature. Weed Sci 46:48–52

    CAS  Google Scholar 

  • Gallagher RS, Cardina J (1998b) Phytochrome-mediated Amaranthus germination II: development of very low fluence sensitivity. Weed Sci 46:53–58

    CAS  Google Scholar 

  • Gniazdowska A, Krasuska U, Czajkowska K, Bogatek R (2010) Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regul 61:75–84

    Article  CAS  Google Scholar 

  • Goldstein S, Russo A, Samuni A (2003) Reactions of PTIO and carboxy-PTIO with NO, NO2, and ·O2−. J Biol Chem 278:50949–50955

    Article  PubMed  CAS  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  PubMed  CAS  Google Scholar 

  • Kępczyński J, Corbineau F, Côme D (1996) Responsiveness of Amaranthus retroflexus seeds to ethephon, 1-aminocyclopropane 1-carboxylic acid and gibberellic acid in relation to temperature and dormancy. Plant Growth Regul 20:259–265

    Article  Google Scholar 

  • Kępczyński J, Kępczyńska E, Bihun M (2003) The involvement of ethylene in the release of primary dormancy in Amaranthus retroflexus seeds. Plant Growth Regul 39:57–62

    Article  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    Article  PubMed  CAS  Google Scholar 

  • Magdalena L, Pagnussat GG (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  Google Scholar 

  • Meeussen J, Keizer MG, Van Riemsdijk WH, De Haan F (1992) Dissolution behavior of iron cyanide (Prussian blue) in contaminated soils. Environ Sci Technol 26:1832–1838

    Article  CAS  Google Scholar 

  • Oracz K, Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    Article  PubMed  CAS  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Chen JG, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and post germination development. Plant Physiol 141:243–256

    Article  PubMed  CAS  Google Scholar 

  • Roach T, Beckett RP, Minibayeva FV, Colville L, Whitaker C, Chen HY, Bailly C, Kranner I (2010) Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ 33:59–75

    PubMed  CAS  Google Scholar 

  • Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223:1154–1164

    Article  PubMed  CAS  Google Scholar 

  • Sarath G, Hou G, Baird LM, Mitchell RB (2007) Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C 4-grasses. Planta 226:697–708

    Article  PubMed  CAS  Google Scholar 

  • Schonbeck MW, Egley GH (1980) Redroot pigweed (Amaranthus retroflexus) seed germination responses to afterripening, temperature, ethylene, and some other environmental factors. Weed Sci 28:543–548

    CAS  Google Scholar 

  • Whitaker C, Beckett RP, Minibayeva FV, Kranner I (2010) Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds. S Afr J Bot 76:601–605

    Article  CAS  Google Scholar 

  • Xu J, Xu X, Verstraete W (2001) The bactericidal effect and chemical reactions of acidified nitrite under conditions simulating the stomach. J Appl Microbiol 90:523–529

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc B 355:1477–1488

    Article  CAS  Google Scholar 

  • Young JA, Evans RA (1977) Squirreltail seed germination. J Range Manage 30:33–36

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Minggao He, Qingyun Wang, Xie Li and Jianqing Ye (Institute of Botany, the Chinese Academy of Sciences) for assisting with germination assays. We also thank Prof. Xiaobai Jin (Institute of Botany, the Chinese Academy of Sciences) for revising the manuscript. This research was financially supported by National Natural Sciences Foundation of China (30870223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songquan Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Deng, Z., Cheng, H. et al. Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of Amaranthus retroflexus seeds in a nitric oxide-dependent manner. Plant Growth Regul 64, 155–161 (2011). https://doi.org/10.1007/s10725-010-9551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9551-0

Keywords

Navigation