Plant Growth Regulation

, Volume 61, Issue 3, pp 253–263 | Cite as

Effects of NaCl on surface properties, chlorophyll fluorescence and light remission, and cellular compounds of Grewia tenax (Forssk.) Fiori and Tamarindus indica L. leaves

  • Mauricio Hunsche
  • Kathrin Bürling
  • Amina Sirag Saied
  • Michaela Schmitz-Eiberger
  • Muhammad Sohail
  • Jens Gebauer
  • Georg Noga
  • Andreas Buerkert
Original Research


Seedlings of the salt-tolerant plant grewia [Grewia tenax (Forssk.) Fiori] and the moderately salt-tolerant tamarind (Tamarindus indica L.) were grown under controlled conditions and treated daily with NaCl solutions to investigate mechanisms of tolerance to salinity. Leaf micromorphology, cuticular wax load, chlorophyll fluorescence and light remission, as well as antioxidative potential were evaluated. As confirmed by energy-dispersive X-ray microanalysis in both species, absorption of sodium and chlorine increased with rising NaCl concentration in the treatment solution. In parallel, accumulation of calcium in grewia leaves was strongly reduced, leading to less crystals of calcium oxalate in leaf tissue. In grewia the cuticular wax load, chlorophyll content, and electron transport rate (ETR) were significantly reduced by comparatively low NaCl concentrations. In tamarind, in contrast, wax load and ETR were not significantly affected, while the decrease of chlorophyll content was less pronounced. Measurements of the antioxidative capacity and the imbalance between values of lipophilic and hydrophilic extracts at different NaCl concentrations confirmed that grewia is more salt tolerant than tamarind. This higher tolerance degree seemed to be associated with grewias’ more efficient scavenging of free radicals and the regulation of the antioxidative potential in lipophilic and hydrophilic extracts.


Environment Natural resources Plant adaptations Stress physiology 



Dimethyl sulfoxide


Electrical conductivity


Energy-dispersive X-ray microanalysis


Electron transport rate


Maximum fluorescence


Ground fluorescence


Maximum quantum yield of PS2 photochemistry


Normalized difference vegetation index


Sodium chloride


Near infrared


Pulse amplitude modulated chlorophyll fluorescence


Photosynthetically active radiation


Reactive oxygen species


Scanning electron microscope



The authors thank Libeth Schwager, Gertrudis Heimes, and Knut Wichterich for their support in the laboratory activities and scanning electron microscope work.


  1. Arbona V, Flors V, Jacas J, Garcia-Augustin P, Gomez-Cadenas A (2003) Enzymatic and non enzymatic antioxidant responses of Carrizo citrange, a salt sensitive citrus rootstock to different levels of salinity. Plant Cell Physiol 44(4):388–394CrossRefPubMedGoogle Scholar
  2. Aziz AA, Junit SM, Razali N (2009) Tamarindus indica plant as a source of potent antioxidants with potential hypolipidaemic properties. In: 34. Congress of the Federation of European Biochemical Societies, FEBS J, vol 276, pp 297Google Scholar
  3. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55(403):1607–1621CrossRefPubMedGoogle Scholar
  4. Belkhodja R, Morales F, Abadia A, Gomez-Aparisi J, Abadia J (1994) Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). J Plant Physiol 138:92–96Google Scholar
  5. Blanke MM (1993) Determination of chlorophyll using DMSO. Vitic Enol Sci 47:32–35Google Scholar
  6. Bondada BR, Oosterhuis DM, Murphy JB, Kim KS (1996) Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and boll. Environ Exp Bot 36:61–69CrossRefGoogle Scholar
  7. Bringe K, Hunsche M, Schmitz-Eiberger M, Noga G (2007) Retention and rainfastness of mancozeb as affected by physicochemical characteristics of adaxial apple leaf surface after enhanced UV-B radiation. J Environ Sci Health B 42(2):133–141CrossRefPubMedGoogle Scholar
  8. Chaves MM, Flexas J, Pinheiro C (2008) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot Lond 103:551–560CrossRefGoogle Scholar
  9. Chevolleau S, Debal A, Ucciani E (1992) Determination of the antioxidant activity of plant extracts. Rev Fr Corps Gras 39(1–2):120–126Google Scholar
  10. Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57(5):1045–1058CrossRefPubMedGoogle Scholar
  11. Delarosaibarra M, Maiti RK (1995) Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. J Plant Physiol 146(4):515–519Google Scholar
  12. El-Siddig K, Gebauer J, Ebert G, Ali AM, Inanaga S (2004) Influence of salinity on emergence and early seedling growth of Tamarindus indica L. Eur J Hortic Sci 69(2):79–81Google Scholar
  13. El-Siddig K, Gunasena HPM, Prasad BA, Pushpakumara DKNG, Ramana KVR, Vijayanand P, Williams JT (2006) Tamarind, Tamarindus indica. Southampton Centre for Underutilised Crops, SouthamptonGoogle Scholar
  14. Ferrer JP, Montero AR, Hurtado YV, Ferrada CR, Carballo C (2008) Tamarindus indica L.: evaluation of the mutagenic and antioxidant potential. Latin Am J Pharm 27(3):375–379Google Scholar
  15. Foyer CH (1993) Ascorbic acid. In: Alscher RG, Hess JL (eds) Antioxidants in higher plants. CRC Press, Boca Raton, pp 31–58Google Scholar
  16. Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Ann Rev Plant Biol 56:41–71CrossRefGoogle Scholar
  17. Fricke W, Akhiyarova G, Wei WX, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57(5):1079–1095CrossRefPubMedGoogle Scholar
  18. Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E. Plant Cell Environ 15:381–392CrossRefGoogle Scholar
  19. Gebauer J, El-Siddig K, Ebert G (2001) Response of Tamarindus indica seedlings to salt stress. J Appl Bot Angew Bot 75:97–100Google Scholar
  20. Gebauer J, El-Siddig K, Salih AA, Ebert G (2004) Tamarindus indica L. seedlings are moderately salt tolerant when exposed to NaCl-induced salinity. Sci Hortic Amsterdam 103:1–8CrossRefGoogle Scholar
  21. Gebauer J, El-Siddig K, El Tahir BA, Salih AA, Ebert G, Hammer K (2007) Exploiting the potential of indigenous fruit trees: Grewia tenax (Forssk.) Fiori in Sudan. Genet Resour Crop Evol 54:1701–1708CrossRefGoogle Scholar
  22. Hartl WP, Klapper H, Barbier B, Ensikat H-J, Dronskowski R, Müller P, Ostendorp G, Tye A, Bauer R, Barthlott W (2007) Diversity of calcium oxalate crystals in Cactaceae. Can J Bot 85:501–517CrossRefGoogle Scholar
  23. Hunsche M, Noga G (2008) Applicability of the energy dispersive X-ray microanalysis for quantification of irregular calcium deposits on fruit and leaf cuticles. J Microsc Oxford 232:453–462CrossRefGoogle Scholar
  24. Hunsche M, Blanke M, Noga G (2010) Does the microclimate under hail nets influence micromorphological characteristics of apple leaves and cuticles? J Plant Physiol. doi: 10.1016/j.jplph.2010.02.007 PubMedGoogle Scholar
  25. Jenks AJ, Hasegawa PM, Jain SM, Foolad MR (2007) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York 817 pCrossRefGoogle Scholar
  26. Khemiss F, Ghoul-Mazgar S, Moshtaghie AA, Saidane D (2006) Study of the effect of aqueous extract of Grewia tenax fruit on iron absorption by everted gut sac. J Ethnopharmacol 103:90–98CrossRefPubMedGoogle Scholar
  27. Lamien-Meda A, Lamien CE, Compaore MMY, Meda RNT, Kiendrebeogo M, Zeba B, Millogo FF, Nacoulma OG (2008) Polyphenol content and antioxidant capacity of fourteen wild edible fruits from Burkina Faso. Molecules 13(3):581–594CrossRefPubMedGoogle Scholar
  28. Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393CrossRefGoogle Scholar
  29. Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot Lond 78:389–398CrossRefGoogle Scholar
  30. Mishra SK, Subrahmanyam D, Singhal GS (1991) Interrelationship between salt and light stress on primary processes of photosynthesis. J Plant Physiol 138:92–96Google Scholar
  31. Misra AN, Srivastava A, Strasser RJ (2001) Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. J Plant Physiol 158:1173–1181CrossRefGoogle Scholar
  32. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  33. Netondo GW, Onyango JO, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811Google Scholar
  34. Paula FS, Kabeya LM, Kanashiro A, de Figueiredo ASG, Azzolini AECS, Uyemura SA, Lucisano-Valim YM (2009) Modulation of human neutrophil oxidative metabolism and degranulation by extract of Tamarindus indica L. fruit pulp. Food Chem Toxicol 47(1):163–170CrossRefPubMedGoogle Scholar
  35. Peńuelas J, Isla R, Filella I, Araus JL (1997) Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci 37:198–202CrossRefGoogle Scholar
  36. Percival GC, Fraser GA, Oxenham G (2003) Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. J Arboric 29(2):61–65Google Scholar
  37. Rong-Hual L, Pei-Pol G, Baumz M, Grando S, Ceccarelli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China 5(10):751–757Google Scholar
  38. Saied AS, Sohail M, Gebauer J, Buerkert A (2010) Response of Grewia tenax (Forssk.) Fiori to NaCl-induced salinity. Eur J Hortic Sci 75(1):42–50Google Scholar
  39. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci India 86(3):407–421Google Scholar
  40. Schmitz M, Noga G (2000) Selected plant components and their antioxidative capacity in hydrophilic and lipophilic extracts of Phaeseolus vulgaris, Malus domestica and Vitis vinifera leaves. Eur J Hortic Sci 65:65–73Google Scholar
  41. Serrano R, Gaxiola R (1994) Microbial models and salt stress tolerance in plants. CRC Crit Rev Plant Sci 13(2):121–138CrossRefGoogle Scholar
  42. Shabala SN, Shabala SI, Martynenko AI, Babourina O, Newman IA (1998) Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust J Plant Physiol 25(5):609–616CrossRefGoogle Scholar
  43. Smilie RM, Nott R (1982) Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiol 70:1049–1054CrossRefGoogle Scholar
  44. Sudjaroen Y, Haubner R, Wurtele R, Hull EE, Erben G, Spiegelhalder B, Changbumrung S, Bartsch H, Owen RW (2005) Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp. Food Chem Toxicol 43(11):1673–1682CrossRefPubMedGoogle Scholar
  45. Vijayan K, Chakraborti SP, Ercisli S, Ghosh PD (2008) NaCl induced morpho-biochemical and anatomical changes in mulberry (Morus spp.). Plant Growth Regul 56(1):61–69CrossRefGoogle Scholar
  46. Winter K, Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the halophyte Mesembryanthemum crystallinum during the induction of crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95:768–776CrossRefPubMedGoogle Scholar
  47. Xu HL, Gauthier L, Gosselin A (1995) Stomatal and cuticular transpiration of greenhouse tomato plants in response to high solutions electrical-conductivity and low soil-water content. J Am Soc Hortic Sci 120(3):417–422Google Scholar
  48. Yang Z, Rao MN, Elliott NC, Kindler SD, Popham TW (2005) Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comput Electron Agric 47:121–135CrossRefGoogle Scholar
  49. Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mauricio Hunsche
    • 1
  • Kathrin Bürling
    • 1
  • Amina Sirag Saied
    • 2
  • Michaela Schmitz-Eiberger
    • 1
  • Muhammad Sohail
    • 4
  • Jens Gebauer
    • 3
  • Georg Noga
    • 1
  • Andreas Buerkert
    • 3
  1. 1.Institute of Crop Science and Resource Conservation, Horticultural ScienceUniversity of BonnBonnGermany
  2. 2.Faculty of Agriculture, Department of HorticultureUniversity of KhartoumShambatSudan
  3. 3.Organic Plant Production and Agroecosystems Research in the Tropics and SubtropicsUniversity of KasselWitzenhausenGermany
  4. 4.Crop Sciences Institute, National Agricultural Research CenterIslamabadPakistan

Personalised recommendations