Skip to main content

Advertisement

Log in

Effects of NaCl on surface properties, chlorophyll fluorescence and light remission, and cellular compounds of Grewia tenax (Forssk.) Fiori and Tamarindus indica L. leaves

  • Original Research
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Seedlings of the salt-tolerant plant grewia [Grewia tenax (Forssk.) Fiori] and the moderately salt-tolerant tamarind (Tamarindus indica L.) were grown under controlled conditions and treated daily with NaCl solutions to investigate mechanisms of tolerance to salinity. Leaf micromorphology, cuticular wax load, chlorophyll fluorescence and light remission, as well as antioxidative potential were evaluated. As confirmed by energy-dispersive X-ray microanalysis in both species, absorption of sodium and chlorine increased with rising NaCl concentration in the treatment solution. In parallel, accumulation of calcium in grewia leaves was strongly reduced, leading to less crystals of calcium oxalate in leaf tissue. In grewia the cuticular wax load, chlorophyll content, and electron transport rate (ETR) were significantly reduced by comparatively low NaCl concentrations. In tamarind, in contrast, wax load and ETR were not significantly affected, while the decrease of chlorophyll content was less pronounced. Measurements of the antioxidative capacity and the imbalance between values of lipophilic and hydrophilic extracts at different NaCl concentrations confirmed that grewia is more salt tolerant than tamarind. This higher tolerance degree seemed to be associated with grewias’ more efficient scavenging of free radicals and the regulation of the antioxidative potential in lipophilic and hydrophilic extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

EC:

Electrical conductivity

EDX:

Energy-dispersive X-ray microanalysis

ETR:

Electron transport rate

Fm:

Maximum fluorescence

Fo:

Ground fluorescence

Fv/Fo:

Maximum quantum yield of PS2 photochemistry

NDVI:

Normalized difference vegetation index

NaCl:

Sodium chloride

NIR:

Near infrared

PAM:

Pulse amplitude modulated chlorophyll fluorescence

PAR:

Photosynthetically active radiation

ROS:

Reactive oxygen species

SEM:

Scanning electron microscope

References

  • Arbona V, Flors V, Jacas J, Garcia-Augustin P, Gomez-Cadenas A (2003) Enzymatic and non enzymatic antioxidant responses of Carrizo citrange, a salt sensitive citrus rootstock to different levels of salinity. Plant Cell Physiol 44(4):388–394

    Article  CAS  PubMed  Google Scholar 

  • Aziz AA, Junit SM, Razali N (2009) Tamarindus indica plant as a source of potent antioxidants with potential hypolipidaemic properties. In: 34. Congress of the Federation of European Biochemical Societies, FEBS J, vol 276, pp 297

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55(403):1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Belkhodja R, Morales F, Abadia A, Gomez-Aparisi J, Abadia J (1994) Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). J Plant Physiol 138:92–96

    Google Scholar 

  • Blanke MM (1993) Determination of chlorophyll using DMSO. Vitic Enol Sci 47:32–35

    Google Scholar 

  • Bondada BR, Oosterhuis DM, Murphy JB, Kim KS (1996) Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and boll. Environ Exp Bot 36:61–69

    Article  CAS  Google Scholar 

  • Bringe K, Hunsche M, Schmitz-Eiberger M, Noga G (2007) Retention and rainfastness of mancozeb as affected by physicochemical characteristics of adaxial apple leaf surface after enhanced UV-B radiation. J Environ Sci Health B 42(2):133–141

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2008) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot Lond 103:551–560

    Article  CAS  Google Scholar 

  • Chevolleau S, Debal A, Ucciani E (1992) Determination of the antioxidant activity of plant extracts. Rev Fr Corps Gras 39(1–2):120–126

    Google Scholar 

  • Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57(5):1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Delarosaibarra M, Maiti RK (1995) Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. J Plant Physiol 146(4):515–519

    CAS  Google Scholar 

  • El-Siddig K, Gebauer J, Ebert G, Ali AM, Inanaga S (2004) Influence of salinity on emergence and early seedling growth of Tamarindus indica L. Eur J Hortic Sci 69(2):79–81

    Google Scholar 

  • El-Siddig K, Gunasena HPM, Prasad BA, Pushpakumara DKNG, Ramana KVR, Vijayanand P, Williams JT (2006) Tamarind, Tamarindus indica. Southampton Centre for Underutilised Crops, Southampton

    Google Scholar 

  • Ferrer JP, Montero AR, Hurtado YV, Ferrada CR, Carballo C (2008) Tamarindus indica L.: evaluation of the mutagenic and antioxidant potential. Latin Am J Pharm 27(3):375–379

    Google Scholar 

  • Foyer CH (1993) Ascorbic acid. In: Alscher RG, Hess JL (eds) Antioxidants in higher plants. CRC Press, Boca Raton, pp 31–58

    Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Ann Rev Plant Biol 56:41–71

    Article  CAS  Google Scholar 

  • Fricke W, Akhiyarova G, Wei WX, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57(5):1079–1095

    Article  CAS  PubMed  Google Scholar 

  • Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E. Plant Cell Environ 15:381–392

    Article  CAS  Google Scholar 

  • Gebauer J, El-Siddig K, Ebert G (2001) Response of Tamarindus indica seedlings to salt stress. J Appl Bot Angew Bot 75:97–100

    Google Scholar 

  • Gebauer J, El-Siddig K, Salih AA, Ebert G (2004) Tamarindus indica L. seedlings are moderately salt tolerant when exposed to NaCl-induced salinity. Sci Hortic Amsterdam 103:1–8

    Article  CAS  Google Scholar 

  • Gebauer J, El-Siddig K, El Tahir BA, Salih AA, Ebert G, Hammer K (2007) Exploiting the potential of indigenous fruit trees: Grewia tenax (Forssk.) Fiori in Sudan. Genet Resour Crop Evol 54:1701–1708

    Article  CAS  Google Scholar 

  • Hartl WP, Klapper H, Barbier B, Ensikat H-J, Dronskowski R, Müller P, Ostendorp G, Tye A, Bauer R, Barthlott W (2007) Diversity of calcium oxalate crystals in Cactaceae. Can J Bot 85:501–517

    Article  CAS  Google Scholar 

  • Hunsche M, Noga G (2008) Applicability of the energy dispersive X-ray microanalysis for quantification of irregular calcium deposits on fruit and leaf cuticles. J Microsc Oxford 232:453–462

    Article  CAS  Google Scholar 

  • Hunsche M, Blanke M, Noga G (2010) Does the microclimate under hail nets influence micromorphological characteristics of apple leaves and cuticles? J Plant Physiol. doi:10.1016/j.jplph.2010.02.007

    PubMed  Google Scholar 

  • Jenks AJ, Hasegawa PM, Jain SM, Foolad MR (2007) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York 817 p

    Book  Google Scholar 

  • Khemiss F, Ghoul-Mazgar S, Moshtaghie AA, Saidane D (2006) Study of the effect of aqueous extract of Grewia tenax fruit on iron absorption by everted gut sac. J Ethnopharmacol 103:90–98

    Article  CAS  PubMed  Google Scholar 

  • Lamien-Meda A, Lamien CE, Compaore MMY, Meda RNT, Kiendrebeogo M, Zeba B, Millogo FF, Nacoulma OG (2008) Polyphenol content and antioxidant capacity of fourteen wild edible fruits from Burkina Faso. Molecules 13(3):581–594

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot Lond 78:389–398

    Article  CAS  Google Scholar 

  • Mishra SK, Subrahmanyam D, Singhal GS (1991) Interrelationship between salt and light stress on primary processes of photosynthesis. J Plant Physiol 138:92–96

    CAS  Google Scholar 

  • Misra AN, Srivastava A, Strasser RJ (2001) Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. J Plant Physiol 158:1173–1181

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Netondo GW, Onyango JO, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Google Scholar 

  • Paula FS, Kabeya LM, Kanashiro A, de Figueiredo ASG, Azzolini AECS, Uyemura SA, Lucisano-Valim YM (2009) Modulation of human neutrophil oxidative metabolism and degranulation by extract of Tamarindus indica L. fruit pulp. Food Chem Toxicol 47(1):163–170

    Article  CAS  PubMed  Google Scholar 

  • Peńuelas J, Isla R, Filella I, Araus JL (1997) Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci 37:198–202

    Article  Google Scholar 

  • Percival GC, Fraser GA, Oxenham G (2003) Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. J Arboric 29(2):61–65

    Google Scholar 

  • Rong-Hual L, Pei-Pol G, Baumz M, Grando S, Ceccarelli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China 5(10):751–757

    Google Scholar 

  • Saied AS, Sohail M, Gebauer J, Buerkert A (2010) Response of Grewia tenax (Forssk.) Fiori to NaCl-induced salinity. Eur J Hortic Sci 75(1):42–50

    CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci India 86(3):407–421

    CAS  Google Scholar 

  • Schmitz M, Noga G (2000) Selected plant components and their antioxidative capacity in hydrophilic and lipophilic extracts of Phaeseolus vulgaris, Malus domestica and Vitis vinifera leaves. Eur J Hortic Sci 65:65–73

    CAS  Google Scholar 

  • Serrano R, Gaxiola R (1994) Microbial models and salt stress tolerance in plants. CRC Crit Rev Plant Sci 13(2):121–138

    Article  CAS  Google Scholar 

  • Shabala SN, Shabala SI, Martynenko AI, Babourina O, Newman IA (1998) Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust J Plant Physiol 25(5):609–616

    Article  CAS  Google Scholar 

  • Smilie RM, Nott R (1982) Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiol 70:1049–1054

    Article  Google Scholar 

  • Sudjaroen Y, Haubner R, Wurtele R, Hull EE, Erben G, Spiegelhalder B, Changbumrung S, Bartsch H, Owen RW (2005) Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp. Food Chem Toxicol 43(11):1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Vijayan K, Chakraborti SP, Ercisli S, Ghosh PD (2008) NaCl induced morpho-biochemical and anatomical changes in mulberry (Morus spp.). Plant Growth Regul 56(1):61–69

    Article  CAS  Google Scholar 

  • Winter K, Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the halophyte Mesembryanthemum crystallinum during the induction of crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95:768–776

    Article  CAS  PubMed  Google Scholar 

  • Xu HL, Gauthier L, Gosselin A (1995) Stomatal and cuticular transpiration of greenhouse tomato plants in response to high solutions electrical-conductivity and low soil-water content. J Am Soc Hortic Sci 120(3):417–422

    Google Scholar 

  • Yang Z, Rao MN, Elliott NC, Kindler SD, Popham TW (2005) Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Comput Electron Agric 47:121–135

    Article  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Libeth Schwager, Gertrudis Heimes, and Knut Wichterich for their support in the laboratory activities and scanning electron microscope work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Hunsche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunsche, M., Bürling, K., Saied, A.S. et al. Effects of NaCl on surface properties, chlorophyll fluorescence and light remission, and cellular compounds of Grewia tenax (Forssk.) Fiori and Tamarindus indica L. leaves. Plant Growth Regul 61, 253–263 (2010). https://doi.org/10.1007/s10725-010-9473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9473-x

Keywords

Navigation