Plant Growth Regulation

, Volume 61, Issue 2, pp 153–159 | Cite as

Symbiotic nitrogen fixation and nitrate reduction in two peanut cultivars with different growth habit and branching pattern structures

  • Romina Delfini
  • Cecilia Belgoff
  • Elena Fernández
  • Adriana Fabra
  • Stella Castro
Original paper


We have investigated the response of two peanut cultivars (TEGUA and UTRE) with different growth habits and branching pattern structures to different nitrogen (N) sources, namely, N-fertilizer or N2 made available by symbiotic fixation, and analysed the pattern of nitrate reductase (NR) activity in these cultivars. Nitrate and amino acid contents were also examined under these growth conditions. In terms of nitrogen source, cv. TEGUA showed a better response to inoculation with Bradyrhizobium sp. SEMIA 6144 at 40 days after planting, while cv. UTRE responded better to N-fertilizer (5 mM KNO3). Both cultivars showed different patterns of NR activity in the analyzed plant organs (leaves, roots, and nodules), which were dependent on the N source. When nitrogen became available to the plant through symbiotic N2 fixation, the patterns of NR activity distribution were different in the two cultivars, with cv. TEGUA showing a higher NR activity in the nodules than in the leaves and roots, and cv. UTRE showing no difference in terms of NR activity among organs. The nitrate and amino acid contents showed a similar trend between the two cultivars, with the highest nitrate content in the leaves of fertilized plants and the highest amino acid content in the nodules. The high nitrate content of the leaves of cv. UTRE indicated the better response of this cultivar to N-fertilizer.


Amino acids Bradyrhizobium sp. Nitrate Nitrate reductase Peanut cultivars 



Colony-forming units


International Centre of Agricultural Research in the Dry Area


Microbial Resource Centres


Nitrate reductase


Yeast extract mannitol


Yeast extract mannitol agar



We thank the Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto for providing financial assistance for this research.


  1. Andrews M, Faria SM, McInroy SG, Sprent J (1990) Constitutive nitrate reductase activity in the leguminosae. Phytochem 29:49–54CrossRefGoogle Scholar
  2. Ayala L (1997) Estudio de algunos aspectos de la fijación simbiótica de nitrógeno por el maní (Arachis hypogaea). Agron Trop 27:427–449Google Scholar
  3. Becana M, Sprent JI (1987) Nitrogen fixation and nitrite reduction in the root nodules of legumes. Physiol Plant 70:757–765CrossRefGoogle Scholar
  4. Boogerd F, Van Rossum D (1997) Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev 21:5–27CrossRefGoogle Scholar
  5. Bradford M (1976) A rapid sensitive method for the quantification the microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–276CrossRefPubMedGoogle Scholar
  6. Caba JM, Lluch C, Ligero F (1995) Distribution of nitrate reductase activity in Vicia faba: effect of nitrate and plant genotype. Physiol Plant 93:667–672CrossRefGoogle Scholar
  7. Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Mol Biol 50:277–303CrossRefGoogle Scholar
  8. Cataldo D, Haroon N, Schrader L, Young V (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80CrossRefGoogle Scholar
  9. Chamber-Pérez MA, Camacho-Martínez M, Soriano-Niebla JJ (1997) Nitrate reductase activities of Bradyrhizobium sp. in tropical legumes: effects of nitrate on O2 diffusion in nodules and carbon costs of N2 fixation. J Plant Physiol 150:92–96Google Scholar
  10. Chen Q, Zhang X, Terfework Z, Kaijalainen S, Li D, Lindström K (2003) Diversity and compatibility of peanut (Arachis hypogaea L.) bradyrhizobia and their host plants. Plant Soil 255:605–617CrossRefGoogle Scholar
  11. Cox F, Adams F, Tucker B (1982) Liming, fertilization and mineral nutrition. In: Pattee HE, Young CT (eds) Peanut science and technology. American Peanut Research and Education Society, YoakumGoogle Scholar
  12. ICARDA (1990) Chickpea biological nitrogen fixation. In: ICARDA (ed) Food legume improvement program. International Center of Agricultural Research in the Dry Area, Annual Reporter, Aleppo, pp 96–107Google Scholar
  13. Krapovickas A (1973) Evolution of the genus Arachis. In: Moav R (ed) Agricultural genetics-selected topics. National Council of Research and Development, Jerusalem, p 131–151Google Scholar
  14. Lucinski R, Polcyn W, Ratajczak L (2002) Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes. Acta Biochim Polonica 49:537–546Google Scholar
  15. Nelson D, Sommers L (1973) Determination of total nitrogen in plant material. Agron J 65:109–112Google Scholar
  16. Pigaglio E, Durand N, Meyer C (1999) Conserved acidic motif in the N-terminal domain of nitrate reductase is necessary for the inactivaction of the enzyme in the dark by phosphorylation and 14–3–3 binding. Plant Physiol 119:219–229CrossRefPubMedGoogle Scholar
  17. Polcyn W, Lucinski R (2001) Functional similarities of nitrate reductase as a source of nitrogen in soybean, Glicyne max (L). Physiol Plant 158:829–834CrossRefGoogle Scholar
  18. Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67:10–15CrossRefPubMedGoogle Scholar
  19. Sessitsch A, Howieson JG, Perret X, Antoun H, Martnez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378CrossRefGoogle Scholar
  20. Silveria JA, Matos JC, Cecatto VM, Viegas RA, Oliveira JT (2001) Nitrate reductase activity, distribution, and response to nitrate in two contrasting Phaseolus species inoculated with Rhizobium spp. Environ Exp Bot 46:37–46CrossRefGoogle Scholar
  21. Somasegaran P, Hoben H (1994) Quantifying the growth of Rhizobia. In: Somasegaran P, Hoben H (eds) Handbook for Rhizobia. Springer, New York, pp 47–57Google Scholar
  22. Sprent J (1994) Nitrogen fixation. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 255–280Google Scholar
  23. Suganuma N, Watanabe M, Yamada T, Isaura T, Yanamoto K, Nishimura M, Toniyama K (1999) Involvement of ammonia in maintenance of cytosolic glutamine synthetase activity in Pisum sativum nodules. Plant Cell Physiol 40:1053–1060Google Scholar
  24. Taurian T, Aguilar OM, Fabra A (2002) Characterization of nodulating peanut rhizobia isolated from a native soil population in Córdoba, Argentina. Symbiosis 33:59–72Google Scholar
  25. Terzo E, Natera V, Isola MC, Fabra A, Franzoni L, Castro S (2005) Effect of low pH on the enzyme activities of the ammonium assimilation pathways in the symbiotic association Bradyrhizobium sp.-peanut (Arachis hypogaea L.). Symbiosis 40:1–6Google Scholar
  26. Vance CP, Egli MA Griffith SM (1988) Plant regulated aspects of nodulation and N2 fixation. Plant Cell Environ 11:413–427Google Scholar
  27. Vincent J (1970) A manual for the practical study of root nodule bacteria. International biological programme. Handbook No. 15. Blackwell Scientific, OxfordGoogle Scholar
  28. Wynne JC, Elkan GH, Isleib TG, Schneeweis TJ (1983) Effect of host plant, Rhizobium strain and host x strain interaction on symbiotic variability in peanut. Peanut Sci 10:110–114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Romina Delfini
    • 1
  • Cecilia Belgoff
    • 1
  • Elena Fernández
    • 2
  • Adriana Fabra
    • 1
  • Stella Castro
    • 1
  1. 1.Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Departamento de Producción Vegetal, Facultad de Agronomía y VeterinariaUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations